Assessment of the actual shape of the hot-rolled strip cross-section contour. Part 2. Profile Classifier

2020 ◽  
pp. 33-37
Author(s):  
S. M. Belskiy ◽  
◽  
A. N. Shkarin ◽  
V. A. Pimenov ◽  
◽  
...  

The geometric parameters describing the features of the crosssectional profile of a hot-rolled strips do not give a complete picture of the flatness acquired by the cold-rolled strips rolled from these strips. An additional analysis, the results of which are presented in Message 1, showed that there are four characteristic classes of cross-sectional profiles of hot rolled strips that have a significant effect on the shape of the strips during cold rolling, three of which negatively affect the flatness of the cold rolled strips. The cross-sectional profiles of hot-rolled strips with a concave middle part and / or marginal thickenings lead to the appearance of edge waviness, peak-like cross-sectional profiles cause central warping. Therefore, the actual task is to determine the factual shape of cross-sectional profile. 6th order polynomials were used to digitalize and parameterize hot-rolled profile. As a result, we developed analytic function of the transverse profile, which keeps important information about its near-edge areas and features in the middle part. To assign a specific crosssectional profile of a hot-rolled strip to one of four characteristic classes of cross-sections, mathematical software was developed, called a classifier, and implemented with the programming environment R. To classify the profiles of the hot-rolled cross-section according to characteristic classes, a linear discriminant method was used as a machine learning method analysis. The result is an adequate mathematical model for recognizing the shape of the cross-sectional profile. The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project No. 19-38-90257.

2021 ◽  
Vol 64 (1) ◽  
pp. 7-13
Author(s):  
S. M. Bel’skii ◽  
I. I. Shopin ◽  
A. N. Shkarin

Increasing the level of automation of metallurgical units and the development of industrial information systems increases the number of p ters of production and technological processes available for analysis. The consequence is an increase in the complexity and duration of preliminary data preparation for subsequent mathematical and statistical analysis. It is therefore important to develop new and improve existing techniques for the automated process of primary data production. When developing methods of primary data preparation, it should be taken into account that accuracy and adequacy of results of subsequent mathematical analysis are determined by accuracy and adequacy of used initial data. The cross-sectional profile parameters of hot-rolled strips, such as wedge, convexity, thickness variation, displacement, wedge in near-rim zones, local thickenings and thinning of the strip are calculated parameters, i.e. secondary to actual strip thickness measurements over the length and width of hot-rolled strips. As technology is improved in cold rolling shops, the number of grade groups is increasing, for which technological modes of units and processing routes are selected. They are based on actual values of parameters of cross-section profile in order to further reduce the probability of formation of inappropriate products and increased metal consumption. The presented article provides an overview of conventional calculation methods for parameters of cross-section profile of hot-rolled strip and gives an assessment of accuracy and adequacy of application of the parameters averaged along strip length to the whole strip.


Author(s):  
Ang Li ◽  
Jun Chen ◽  
Yangfan Liu ◽  
Stuart Bolton ◽  
Patricia Davies

Abstract In recent years, the bladeless fan that does not have visible impellers have been widely applied in household appliances. Since the customers are particularly sensitive to noise and the strength of wind generated by the fan, the aerodynamic and acoustic performances of the fan need to be accurately characterized in the design stage. In this study, computational fluid dynamic (CFD) and computational aeroacoustics (CAA) are applied to investigate the performances of different designs of a bladeless fan model. The influence of four parameters, namely the airfoil selection for cross-section of the wind channel, the slit width, the height of cross-section and the location of the slit, is investigated. The results indicate the streamwise air velocity increases significantly by narrowing the outlet, but the noise level increases simultaneously. In addition, the generated noise increases while the height of fan cross-section increases, and a 4mm height of the cross section is optimal for aerodynamic performance. When the slit is closer to the location of maximum thickness, the performances of the bladeless fan increases. Moreover, the performance is not changed significantly by changing the cross-sectional profile. Finally, the optimal geometric parameters are identified to guide the future design of the bladeless fan.


2013 ◽  
Vol 43 (5) ◽  
pp. 313-316 ◽  
Author(s):  
S. M. Bel’skii ◽  
Yu. A. Mukhin ◽  
S. I. Mazur ◽  
A. I. Goncharov

Author(s):  
Shiva P Pudasaini ◽  
Yongqi Wang ◽  
Kolumban Hutter

This paper presents a new model and discussions about the motion of avalanches from initiation to run-out over moderately curved and twisted channels of complicated topography and its numerical simulations. The model is a generalization of a well established and widely used depth-averaged avalanche model of Savage & Hutter and is published with all its details in Pudasaini & Hutter (Pudasaini & Hutter 2003 J. Fluid Mech. 495 , 193–208). The intention was to be able to describe the flow of a finite mass of snow, gravel, debris or mud, down a curved and twisted corrie of nearly arbitrary cross-sectional profile. The governing equations for the distribution of the avalanche thickness and the topography-parallel depth-averaged velocity components are a set of hyperbolic partial differential equations. They are solved for different topographic configurations, from simple to complex, by applying a high-resolution non-oscillatory central differencing scheme with total variation diminishing limiter. Here we apply the model to a channel with circular cross-section and helical talweg that merges into a horizontal channel which may or may not become flat in cross-section. We show that run-out position and geometry depend strongly on the curvature and twist of the talweg and cross-sectional geometry of the channel, and how the topography is shaped close to run-out zones.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 58 ◽  
Author(s):  
Deqiao Xie ◽  
Jianfeng Zhao ◽  
Huixin Liang ◽  
Shuang Liu ◽  
Zongjun Tian ◽  
...  

Angular distortion is a common problem in fusion welding, especially when it comes to thick plates. Despite the fact that various processes and influencing factors have been discussed, the cause of the angular distortion has not been clearly revealed. In this research, the asymmetry of cross-sectional profile along thickness is considered of great importance to the angular distortion. A theoretical model concerning the melting-solidification process in fusion welding was established. An expression of the angular distortion was formulated and then validated by experiments of laser welding 316L stainless steel. The results show that the asymmetric cross-sectional profile is a major contributory factor towards the angular distortion mechanism. The asymmetry of cross-section profile along thickness causes the difference between two bending moments in the lower and upper parts of the joint. This is the difference that drives the angular distortion of the welded part. Besides, the asymmetry of cross-section profile is likely to be influenced by various processes and parameters, thereby changing the angular distortion.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Neal M. Patel ◽  
Charles L. Penninger ◽  
John E. Renaud

Many practical structural designs require that the structure is easily manufactured. Design concepts synthesized using conventional topology optimization methods are typically not easily manufactured, in that multiple finishing processes are required to construct the component. A manufacturing technique that requires only minimal effort is extrusion. Extrusion is a manufacturing process used to create objects of a fixed cross-sectional profile. The result of using this process is lower costs for the manufacture of the final product. In this paper, a hybrid cellular automaton algorithm is developed to synthesize constant cross section structures that are subjected to nonlinear transient loading. The novelty of the proposed method is the ability to generate constant cross section topologies for plastic-dynamic problems since the issue of complex gradients can be avoided. This methodology is applied to extrusions with a curved sweep along the direction of extrusion as well. Three-dimensional examples are presented to demonstrate the efficiency of the proposed methodology in synthesizing these structures. Both static and dynamic loading cases are studied.


2011 ◽  
Vol 8 (1) ◽  
pp. 65-74
Author(s):  
Prashant Baredar ◽  
Jitendra Kumar ◽  
Anil Kumar ◽  
Shankar Kumar

Extrusion is an important Metal forming operation. It is a manufacturing process used to create long objects of a fixed cross sectional profile. The extrusion process is based on the plastic deformation of a material due to compressive and shears forces only. No tensile forces are applied to the extruded metal. The latter allows the material to withstand high deformation without tearing out the material. Basically, this procedure is based on the reducing and shaping the cross section of piece of metal squeezing the material through an orifice or a die. Typically the blocks of metal used for this procedure are long straight parts with circular cross sections.


2018 ◽  
Vol 116 (1) ◽  
pp. 105
Author(s):  
Xiaobao Ma ◽  
Dongcheng Wang ◽  
Hongmin Liu ◽  
Shuai Zhang

In order to evaluate the transverse thickness difference of cold-rolled strips according to the information of hot-rolled strips and scientifically guide the setting of the indicators of the hot-rolled silicon strip, the influence model about the relation of the transverse thickness difference of cold-rolled strip to the profile indicators of hot-rolled strip is established in this paper based on simulation results. The transverse thickness difference of cold-rolled strip predicted based on the influence model have strong correspondences to the measured data. Based on the influence model and the statistical analysis of the measured data, the control criterion of the profile indicators of hot-rolled silicon steel according to the requirements for the transverse thickness difference of cold-rolled strip are finally recommended. The simulation results show that the transverse thickness difference of cold-rolled strip is quadratic nonlinearly related to the wedge and crown of hot-rolled strip. The influence model and statistical data analysis indicate that reducing the edge-drop of hot-rolled strip is beneficial to restrain the transverse thickness difference of cold-rolled strip.


Sign in / Sign up

Export Citation Format

Share Document