Routing of a Light Unmanned Aerial Vehicle in a Constant Wind Field with Account of Constraint on the Flight Duration

2016 ◽  
Vol 17 (3) ◽  
pp. 206-210
Author(s):  
D. V. Moiseev ◽  
◽  
V. M. Trinh ◽  
2020 ◽  
Vol 51 (7-9) ◽  
pp. 158-163
Author(s):  
Huiru Cao ◽  
Haixiu Cheng ◽  
Wenjian Zhu

Wind field and sound field characteristics are the key indexes for unmanned aerial vehicle. Therefore, in this study, the wind field and sound field characteristics of a quad-rotor unmanned aerial vehicle are investigated. First, the experimental platform was set up based on quad-rotor unmanned aerial vehicle. Second, the experiments were performed on the wind field and the sound field characteristics of the unmanned aerial vehicle at different working currents. Then, the experiment results were analysed. Meanwhile, the experimental results showed that the working current has a large impact on the wind field and the wind intensity increases as working current increases; as the working current increases, the sound field is enhanced and a linear relationship exists; within a certain distance range of the unmanned aerial vehicle, as distance increases, sound intensity dramatically decreases. The presented methods and results can not only be used to evaluate the performance of the electric multi-rotor unmanned aerial vehicle but also provide references for the further improvement of the performance of the unmanned aerial vehicle.


2020 ◽  
Vol 53 (1-2) ◽  
pp. 83-92 ◽  
Author(s):  
Bo Hang Wang ◽  
Dao Bo Wang ◽  
Zain Anwar Ali

To improve the performance of multi-unmanned aerial vehicle path planning in plateau narrow area, a control strategy based on Cauchy mutant pigeon-inspired optimization algorithm is proposed in this article. The Cauchy mutation operator is chosen to improve the pigeon-inspired optimization algorithm by comparing and analyzing the changing trend of fitness function of the local optimum position and the global optimum position when dealing with unmanned aerial vehicle path planning problems. The plateau topography model and plateau wind field model are established. Furthermore, a variety of control constrains of unmanned aerial vehicles are summarized and modeled. By combining with relative positions and total flight duration, a cooperative path planning strategy for unmanned aerial vehicle group is put forward. Finally, the simulation results show that the proposed Cauchy mutant pigeon-inspired optimization method gives better robustness and cooperative path planning strategy which are effective and advanced as compared with traditional pigeon-inspired optimization algorithm.


Author(s):  
Mohammed S. Mayeed ◽  
Gabriel Darveau

In this study a gasoline powered hexa-copter unmanned aerial vehicle (UAV) has been designed as a solution to farmers’ need for a low cost, easy to maintain, long flight duration, and multi-purpose means of specific aerial applications for insecticides and herbicides. Application of herbicides and pesticides by airplane is an example of how farmers have used technology to improve their bottom line and overall quality of life. Fields can now be sprayed in under an hour instead of consuming an entire day. However, if a producer has noxious weeds in only a small area, fixed-wing aerial application cannot be used as it is only accurate enough to do an entire field. Currently there is no solution for small scale, accurate, aerial herbicide application to meet this need. The currently available Yamaha Rmax UAV costs a tremendous amount of money and also requires a lot of money to maintain. Though it may be useful in large scale aerial spraying on the farm land, it would not be used in targeted specific areas as it is not efficient in specific applications. The gasoline powered hexacopter UAV designed in this study is a low cost solution to farmers’ need for specific aerial applications of insecticides and herbicides. The UAV design can carry 2–3 gallons of herbicide (16.7–25.0 lbs.) for a flight time of more than 30 minutes without refueling. The design could be transported in a 60.3in × 56.7in pickup bed. Structural and fatigue analyses are performed on the complete structure using state of the art software SolidWorks Simulation. The minimum factor of safety is obtained to be 10 based on maximum von Mises stress failure criteria. Under normal conditions with an estimated commercial use of 100 cycles per day it is observed that the design would survive for about 13 years without any fatigue failure. A drop test analysis is performed to ensure the design can survive a 5 feet freefall and a frequency analysis is also performed to observe the critical natural frequency of the structure. Flow simulations are performed on the 6 propellers/blades model using state of the art software SolidWorks Flow Simulation to observe the effect of vorticity interactions on the lift force. The design has been reasonably optimized based on maximizing the lift force. With this new UAV design small scale and substantial farmers could afford a personal UAV for aerial applications with a small amount of capital whose absence hindered efficient and effective specific aerial application for many years.


2019 ◽  
Vol 31 ◽  
pp. 99-107
Author(s):  
Dimo Zafirov

An analysis of requirements to electric vertical take-off and landing unmanned aerial vehicle with fixed wings is carried out in this article. These aircraft have to fulfil requirements of users and to be convenient for operation in any field conditions. Long flight duration and long flight range are important for most missions. Mathematical models for both cases are presented and it has been found that the requirements for the wing load are different. It is recommended to use a type of UAV (Unmanned Aerial Vehicle) that is modular and allows performing flights with different configurations and payload depending on the mission in order to fulfill these requirements.


Aviation ◽  
2016 ◽  
Vol 19 (4) ◽  
pp. 187-193 ◽  
Author(s):  
Valeriy Silkov ◽  
Mykola Delas

The article is dedicated to the substantiation of the complex parameter that characterizes the technical level of an unmanned aerial vehicle (UAV). This parameter includes the maximum lift-to-drag ratio, propeller efficiency, specific fuel consumption, and other components, on which the main flight characteristics, such as flight range and flight duration, depend. To make a comparative assessment of UAVs of different types, a special scale is developed.


2020 ◽  
Vol 19 (3) ◽  
pp. 7-17
Author(s):  
A. S. Kolesnikov ◽  
T. V. Grasko ◽  
V. V. Raznoschikov

The article is devoted to increasing the efficiency of the power plant of an unmanned aerial vehicle through the use of cryogenic fuel. It has been substantiated that the creation of a power plant is based on an integrated approach to the Aircraft Power Plant Fuel system and ensures a significant achievement of perfection indicators according to high-level criteria (fuel consumption per hour (kilometer), range, flight duration, etc.) Analysis of energetic properties of some types of aviation fuels showed that gas fuels in their properties are generally superior to liquid ones, except for one thing low density, which requires a large volume of fuel tanks. An unmanned aerial vehicle Tu-143 Reis (Flight) equipped with a pure turbojet engine TR3-117 was chosen as a prototype. The optimization problem of the study was solved. The task was to determine if an engine intended to run on kerosene could operate on propane according to the main parameters of the working process, provided that possible flight conditions were maintained. The obtained altitude and speed characteristics indicate that the conversion of engines from kerosene to cryogenic propane is possible without changing their design by modernizing the combustion chamber and individual elements of the automatic fuel metering system.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Wei He ◽  
Suxia Zhang

In this study, the stability parameter range of a tethered quadrotor unmanned aerial vehicle (UAV) under the action of the transient wind field is numerically analyzed, which can provide a theoretical basis for the design and application of such systems. Three factors affecting the stability of tethered UAV system are determined, namely, cable tension, cable elongation, and UAV vibration velocity, and the corresponding judgment criteria are obtained. Specifically, the priority of the three criteria sequentially decreases. According to these criteria, the stability parameter range of the tethered UAV is examined under the cable parameters such as length, diameter, and elastic modulus and the environmental parameters such as the amplitude and period of the wind field. The results show that for designing the tethered UAV structure, by reducing the length of the tethered cable and increasing its diameter and elastic modulus, the working stability of tethered UAV system can be improved.


Author(s):  
Bing-Jie Zhu ◽  
Zhong-Xi Hou ◽  
Hua-Jiang Ouyang

An aircraft can extract energy from a gradient wind field by dynamic soaring. The paper presents trajectory optimization of an unmanned aerial vehicle for dynamic soaring by numerical analysis and validates the theoretical work through flight test. The collocation approach is used to convert the trajectory optimization problem into parameters optimization. The control and state parameters include lift coefficient, bank angle, positions, flight path angle, heading angle, and airspeed, which are obtained from the parameter optimization software. To validate the results of numerical simulation, the dynamic soaring experiment is also performed and experimental data are analyzed. This research work shows that the unmanned aerial vehicle can gain enough flight energy from the gradient wind field by following an optimal dynamic soaring trajectory. Meanwhile, the variation of flight path angle, heading angle, and airspeed has a significant influence on the energy transform. The solution can provide theoretical guide to unmanned aerial vehicles for extracting maximum energy from gradient wind fields.


Sign in / Sign up

Export Citation Format

Share Document