A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye

2019 ◽  
Vol 34 (4) ◽  
pp. 365-375 ◽  
Author(s):  
Abraham Amenay Zewde ◽  
Lingling Zhang ◽  
Zifu Li ◽  
Emanuel Alepu Odey

Abstract Nowadays the use of conventional wastewater treatment methods is becoming increasingly challenging mainly due to the presence of organic matter in wastewater. Therefore, an emerging technology is needed to deal with these highly concentrated and toxic non-biodegradable organic matters. In the last few decades, advanced oxidation process (AOP) has emerged to treat wastewaters discharged from industries. Recently, researchers have shown interest to use the application of ultrasound (US) in photocatalysis, i.e. sonophotocatalysis, to improve the performance of the treatment process in the degradation of organic and inorganic contaminants in aqueous streams. Sonophotocatalysis is the combination of the use of ultraviolet (UV) and US.

2019 ◽  
Vol 5 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Nor Elhouda Chadi ◽  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Mohammed Bouhelassa ◽  
Muthupandian Ashokkumar

We have recently reported that the reaction of H2O2/IO4− could be a new advanced oxidation process for water treatment [N. E. Chadi, S. Merouani, O. Hamdaoui, M. Bouhelassa and M. Ashokkumar, Environ. Sci.: Water Res. Technol., 2019, 5, 1113–1123].


2011 ◽  
Vol 64 (9) ◽  
pp. 1876-1884 ◽  
Author(s):  
Anat Lakretz ◽  
Eliora Z. Ron ◽  
Tali Harif ◽  
Hadas Mamane

The main goal of this study was to examine the influence of natural organic matter (NOM) on the efficiency of H2O2/UV advanced oxidation process (AOP) as a preventive treatment for biofilm control. Pseudomonas aeruginosa PAO1 biofilm-forming bacteria were suspended in water and exposed to various AOP conditions with different NOM concentrations, and compared to natural waters. H2O2/UV prevented biofilm formation: (a) up to 24 h post treatment – when residual H2O2 was neutralized; (b) completely (days) – when residual H2O2 was maintained. At high NOM concentrations (i.e. 25 mg/L NOM or 12.5 mg/L DOC) an additive biofilm control effect was observed for the combined H2O2/UV system compared to UV irradiation alone, after short biofilm incubation times (<24 h). This effect was H2O2 concentration dependent and can be explained by the high organic content of these water samples, whereby an increase in NOM could enhance •OH production and promote the formation of additional reactive oxygen species. In addition, maintaining an appropriate ratio of bacterial surviving conc.: residual H2O2conc. post-treatment could prevent bacterial regrowth and biofilm formation.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 137-143 ◽  
Author(s):  
B.-R. Lim ◽  
H.-Y. Hu ◽  
K.-H. Ahn ◽  
K. Fujie

The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.


2019 ◽  
Vol 36 (1) ◽  
pp. 323-329
Author(s):  
Brenda Borbón ◽  
Mercedes T. Oropeza Guzmán ◽  
Shui W. Lin Ho ◽  
Gerardo Aguirre Hernandez

Sign in / Sign up

Export Citation Format

Share Document