EXPERIMENTAL INVESTIGATION AND ANALYTICAL STUDY OF THE HEAT TRANSFER LIMITS OF A DOUBLE LAYER WRAPPED SCREEN MESH HEAT PIPE SYSTEM

2017 ◽  
Vol 14 (1) ◽  
pp. 47-68
Author(s):  
Yogesh R. Mahulkar ◽  
C. M. Sedani ◽  
Manoj K. Jadhav
Author(s):  
Mohammad Mamunur Rahman ◽  
Manabendra Saha ◽  
Muhammad Mostafa Kamal Bhuiya ◽  
Auvi Biswas ◽  
Md. Hasibul Alam ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 309
Author(s):  
Maryam Fallah Abbasi ◽  
Hossein Shokouhmand ◽  
Morteza Khayat

Electronic industries have always been trying to improve the efficiency of electronic devices with small dimensions through thermal management of this equipment, thus increasing the use of small thermal sinks. In this study micro heat pipes with triangular and square cross sections have been manufactured and tested. One of the main objectives is to obtain an understanding of micro heat pipes and their role in energy transmission with electrical double layer (EDL). Micro heat pipes are highly efficient heat transfer devices, which use the continuous evaporation/condensation of a suitable working fluid for two-phase heat transport in a closed system. Since the latent heat of vaporization is very large, heat pipes transport heat at small temperature difference, with high rates. Because of variety of advantage features these devices have found a number of applications both in space and terrestrial technologies. The theory of operation micro heat pipes with EDL is described and the micro heat pipe has been studied. The temperature distribution have achieved through five thermocouples installed on the body. Water and different solution mixture of water and ethanol have used to investigate effect of the electric double layer heat transfer. It was noticed that the electric double layer of ionized fluid has caused reduction of heat transfer.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
H. B. Ma ◽  
B. Borgmeyer ◽  
P. Cheng ◽  
Y. Zhang

A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the vapor bubble as the gas spring for the oscillating motions including effects of operating temperature, nonlinear vapor bulk modulus, and temperature difference between the evaporator and the condenser. Combining the oscillating motion predicted by the model, a mathematical model predicting the temperature difference between the evaporator and the condenser is developed including the effects of the forced convection heat transfer due to the oscillating motion, the confined evaporating heat transfer in the evaporating section, and the thin film condensation in the condensing section. In order to verify the mathematical model, an experimental investigation was conducted on a copper oscillating heat pipe with eight turns. Experimental results indicate that there exists an onset power input for the excitation of oscillating motions in an oscillating heat pipe, i.e., when the input power or the temperature difference from the evaporating section to the condensing section was higher than this onset value the oscillating motion started, resulting in an enhancement of the heat transfer in the oscillating heat pipe. Results of the combined theoretical and experimental investigation will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe.


Author(s):  
R. Sankar Rao ◽  
S. Bhanu Prakash

Heat pipe is the most widely used heat exchanging device in removal of heat from any given system at a faster rate. The thermal characteristics of heat pipe with single and multi-layered screen mesh wicks have been observed with two working fluids water and acetone. Heat pipe of length 250 mm and 12.7 mm outer diameter, made of copper material is used in all the trials of with and without wick structure. A 100 mesh stainless steel screen wire mesh is chosen as wick structure. Experiments were conducted at different heat loads and various inclinations with 100% fill ratio in evaporator. The performance is measured based on total thermal resistance and overall heat transfer coefficient. The heat pipe is found effective at 60o inclination with acetone as a working fluid and with four layered screen mesh wick. Uncertainty in thermal resistance and heat transfer coefficient is calculated for a heat input of 10W at 0 and 60 inclinations.


Author(s):  
Mohammad Alhuyi Nazari ◽  
Roghayeh Ghasempour ◽  
Mohammad Hossein Ahmadi ◽  
Gholamreza Heydarian ◽  
Mohammad Behshad Shafii

2014 ◽  
Vol 87 ◽  
pp. 428-438 ◽  
Author(s):  
Taoufik Brahim ◽  
Mohammed Houcine Dhaou ◽  
Abdelmajid Jemni

Sign in / Sign up

Export Citation Format

Share Document