scholarly journals Computational Study of Heat Transfer Behavior in Fluid-Solid Fluidized Beds.

2020 ◽  
Vol 7 (3) ◽  
pp. 25-41
Author(s):  
Sherko Flamarz ◽  

Heat transfer in fluid-solid fluidized beds is investigated using a combined of computational fluid dynamics (CFD) and discrete element method (DEM) approach, incorporated with a thermal model. The approach has taken into account almost all the mechanisms in heat transfer in fluidized beds. A comparison and validation of hydrodynamic and thermal data of fluidized bed obtained using CFD-DEM thermal approach with experimental and numerical results data in the literature is carried out. The simulations results reveal a good thermal steady state during the simulation time for calculating the thermal behaviors of fluidized beds like; the mean particle temperature, bed porosity, heat transfer coefficient and mean particle Reynolds number. The simulations results are showed a good agreement and consistency with the experimental and numerical data in the literatures. Thus, the integration of combined CFD-DEM with the thermal model is a step toward for the prediction, development the heat transfer efficiency in fluid-solid system, and the decrease of energy consumption of the industrial applications.


Author(s):  
Aayush K. Sharma ◽  
Chandrachur Bhattacharya ◽  
Swarnendu Sen ◽  
Achintya Mukhopadhyay ◽  
Amitava Datta

A computational study on spray combustion, using kerosene (C12H23) as fuel, in a model gas turbine combustor has been carried out. The numerical modelling of radiation heat transfer is carried out in a three-dimensional swirl stabilized, liquid-fuelled combustor. The Favre-averaged governing equations are solved using Ansys Fluent 14.5 as the CFD package. The turbulence parameters are computed using realizable k-ε with standard wall functions model. Eulerian-Lagrangian approach is used to track stochastically the motion of the evaporation species in the continuous gas phase. The effect of different radiation models — Discrete Ordinate (DO), P1 and Discrete Transfer Radiation Model (DTRM) along with Soot are analysed in the present study. To validate the results of radiation modelling carried out in the present work, the computational results have been compared with previous experimental data for the same combustor geometry. The numerical data considering effect of soot along with radiation is shown to closely approximate the experimental data. An attempt has also been made to introduce a liner in the combustor and evaluate its effect and the heat transfer across the liner for the present numerical model.



Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Yu Zhang ◽  
Zhentao Zhang ◽  
Junling Yang ◽  
Yunkai Yue ◽  
Huafu Zhang

Inspired by the superhydrophobic properties of some plants and animals with special structures, such as self-cleaning, water repellent, and drag reduction, the research on the basic theory and practical applications of superhydrophobic surfaces is increasing. In this paper, the characteristics of superhydrophobic surfaces and the preparation methods of superhydrophobic surfaces are briefly reviewed. The mechanisms of drag reduction on superhydrophobic surfaces and the effects of parameters such as flow rate, fluid viscosity, wettability, and surface morphology on drag reduction are discussed, as well as the applications of superhydrophobic surfaces in boiling heat transfer and condensation heat transfer. Finally, the limitations of adapting superhydrophobic surfaces to industrial applications are discussed. The possibility of applying superhydrophobic surfaces to highly viscous fluids for heat transfer to reduce flow resistance and improve heat transfer efficiency is introduced as a topic for further research in the future.



2021 ◽  
Vol 43 (2) ◽  
pp. 21-29
Author(s):  
S.І. Kostyk ◽  
V.Yu. Shybetskyi ◽  
S.V. Plashykhin ◽  
Y.О. Bykoriz

Today, heat transfer processes are present in almost all technological processes of various industries. In heat exchange processes, shell-and-tube heat exchangers are quite effective and easy to manufacture, as the long-term practice of using these devices has shown. Therefore, intensification of heat transfer processes, improvement and development of appropriate equipment is a very urgent task. The object of research is a heat-exchange element with special finning on heat-exchange tubes. The subject of research is the heat transfer processes implemented in a heat exchange element with special finning. The aim of the study is to determine the efficiency of heat transfer of the finned surface of the heat exchange element under conditions of forced convection and to evaluate its efficiency by means of experimental and computer research. This article presents a computer simulation that allows to adequately assess the efficiency of using various designs of finning elements of heat exchange equipment. This is confirmed by the convergence of the experimental data and the results of computer simulation (the discrepancy between the results of the experiment and computer simulation does not exceed 5 %). Experimental and computer studies have shown that the proposed technical solution is more effective than standard ones and can be used in the design of new equipment or improvement of the existing one.



2019 ◽  
Vol 33 (12) ◽  
pp. 5881-5887
Author(s):  
Byung Moon So ◽  
Hamada Mohamed Abdelmotalib ◽  
Mohamed Y. Hashim ◽  
Ik-Tae Im


2014 ◽  
Vol 664 ◽  
pp. 236-242 ◽  
Author(s):  
G.P. Vasilyev ◽  
N.V. Peskov ◽  
M.M. Brodach ◽  
V.A. Lichman ◽  
A.N. Dmitriev ◽  
...  

Presented in this article are the results of theoretical research carried out with financial support from the Ministry of Education and Science of the Russian Federation (contract ID RFMEFI57914X0026) and demonstrating the need to consider the changes in ground heat transfer properties in geothermal borehole heat modeling, due to moisture condensation/evaporation in the ground pores. It is our opinion that in GSHP systems design, the quantity of the boreholes is often overestimated and the associated parameters oversized while the extent of the ground heat transfer is underestimated. In most cases, in designing GSHP operation and performance, this is due to the incorrect assessment of the ground moisture content, which has a most tangible effect on the ground heat transfer properties. This article demonstrates the need to consider the ground moisture condensation/evaporation in GSHP systems design. Presented in the article is the mathematical simulation of the ground pore moisture condensation at the GSHP boreholes. Also presented is numerical data derived from the calculations to assess the effect of the ground pore moisture condensation on the borehole heat transfer efficiency. Through analysis and experimentation, it was determined that the ground pore moisture condensation have a substantial impact on the GSHP efficiency.



2014 ◽  
Vol 704 ◽  
pp. 79-84
Author(s):  
G.P. Vasilyev ◽  
N.V. Peskov ◽  
M.M. Brodach ◽  
V.A. Lichman ◽  
P.E. Zakharov ◽  
...  

This article contains the results of theoretical research carried out with financial support from the Ministry of Education and Science of the Russian Federation (contract ID RFMEFI57914X0026) and demonstrates the need to consider the changes in ground heat transfer properties in geothermal borehole heat modeling, due to moisture condensation/evaporation in the ground pores. In GSHP systems design, the quantity of the boreholes is often overestimated and the associated parameters oversized while the extent of the ground heat transfer is underestimated. This is due to the incorrect assessment of the ground moisture content, which affects the ground heat transfer properties. This article presents the mathematical simulation of the ground pore moisture condensation at the GSHP boreholes. Also presented is numerical data derived from the calculations to assess the effect of the ground pore moisture condensation on the borehole heat transfer efficiency.



Author(s):  
W.M. Stobbs

I do not have access to the abstracts of the first meeting of EMSA but at this, the 50th Anniversary meeting of the Electron Microscopy Society of America, I have an excuse to consider the historical origins of the approaches we take to the use of electron microscopy for the characterisation of materials. I have myself been actively involved in the use of TEM for the characterisation of heterogeneities for little more than half of that period. My own view is that it was between the 3rd International Meeting at London, and the 1956 Stockholm meeting, the first of the European series , that the foundations of the approaches we now take to the characterisation of a material using the TEM were laid down. (This was 10 years before I took dynamical theory to be etched in stone.) It was at the 1956 meeting that Menter showed lattice resolution images of sodium faujasite and Hirsch, Home and Whelan showed images of dislocations in the XlVth session on “metallography and other industrial applications”. I have always incidentally been delighted by the way the latter authors misinterpreted astonishingly clear thickness fringes in a beaten (”) foil of Al as being contrast due to “large strains”, an error which they corrected with admirable rapidity as the theory developed. At the London meeting the research described covered a broad range of approaches, including many that are only now being rediscovered as worth further effort: however such is the power of “the image” to persuade that the above two papers set trends which influence, perhaps too strongly, the approaches we take now. Menter was clear that the way the planes in his image tended to be curved was associated with the imaging conditions rather than with lattice strains, and yet it now seems to be common practice to assume that the dots in an “atomic resolution image” can faithfully represent the variations in atomic spacing at a localised defect. Even when the more reasonable approach is taken of matching the image details with a computed simulation for an assumed model, the non-uniqueness of the interpreted fit seems to be rather rarely appreciated. Hirsch et al., on the other hand, made a point of using their images to get numerical data on characteristics of the specimen they examined, such as its dislocation density, which would not be expected to be influenced by uncertainties in the contrast. Nonetheless the trends were set with microscope manufacturers producing higher and higher resolution microscopes, while the blind faith of the users in the image produced as being a near directly interpretable representation of reality seems to have increased rather than been generally questioned. But if we want to test structural models we need numbers and it is the analogue to digital conversion of the information in the image which is required.





Sign in / Sign up

Export Citation Format

Share Document