ESTIMATE OF MASS AND ENERGY FLUXES OVER GRAPEVINE USING EDDY COVARIANCE TECHNIQUE

2004 ◽  
pp. 631-638 ◽  
Author(s):  
D. Spano ◽  
P. Duce ◽  
R.L. Snyder
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Víctor Cicuéndez ◽  
Javier Litago ◽  
Víctor Sánchez-Girón ◽  
Laura Recuero ◽  
César Sáenz ◽  
...  

Gross primary production (GPP) represents the carbon (C) uptake of ecosystems through photosynthesis and it is the largest flux of the global carbon balance. Our overall objective in this research is to identify and model GPP dynamics and its relationship with meteorological variables and energy fluxes based on time series analysis of eddy covariance (EC) data in two different agroecosystems, a Mediterranean rice crop in Spain and a rainfed cropland in Germany. Crops exerted an important influence on the energy and water fluxes dynamics existing a clear feedback between GPP, meteorological variables and energy fluxes in both type of crops.


2006 ◽  
Vol 3 (4) ◽  
pp. 571-583 ◽  
Author(s):  
D. Papale ◽  
M. Reichstein ◽  
M. Aubinet ◽  
E. Canfora ◽  
C. Bernhofer ◽  
...  

Abstract. Eddy covariance technique to measure CO2, water and energy fluxes between biosphere and atmosphere is widely spread and used in various regional networks. Currently more than 250 eddy covariance sites are active around the world measuring carbon exchange at high temporal resolution for different biomes and climatic conditions. In this paper a new standardized set of corrections is introduced and the uncertainties associated with these corrections are assessed for eight different forest sites in Europe with a total of 12 yearly datasets. The uncertainties introduced on the two components GPP (Gross Primary Production) and TER (Terrestrial Ecosystem Respiration) are also discussed and a quantitative analysis presented. Through a factorial analysis we find that generally, uncertainties by different corrections are additive without interactions and that the heuristic u*-correction introduces the largest uncertainty. The results show that a standardized data processing is needed for an effective comparison across biomes and for underpinning inter-annual variability. The methodology presented in this paper has also been integrated in the European database of the eddy covariance measurements.


2011 ◽  
pp. 295-302 ◽  
Author(s):  
P.A. Paço ◽  
N.S. Conceição ◽  
M.I. Ferreira ◽  
A.C. Malheiro ◽  
A.A. Fernandes-Silva ◽  
...  

2009 ◽  
Vol 10 (3) ◽  
pp. 164-169 ◽  
Author(s):  
Jennifer B. A. Muller ◽  
Mhairi Coyle ◽  
David Fowler ◽  
Martin W. Gallagher ◽  
Eiko G. Nemitz ◽  
...  

2020 ◽  
Author(s):  
Brian Butterworth ◽  
Ankur Desai ◽  
Sreenath Paleri ◽  
Stefan Metzger ◽  
David Durden ◽  
...  

<p>Land surface heterogeneity influences patterns of sensible and latent heat flux, which in turn affect processes in the atmospheric boundary layer. However, gridded atmospheric models often fail to incorporate the influence of land surface heterogeneity due to differences between the temporal and spatial scales of models compared to the local, sub-grid processes. Improving models requires the scaling of surface flux measurements; a process made difficult by the fact that surface measurements usually find an imbalance in the energy budget.</p><p>The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) was an observational experiment designed to investigate how the atmospheric boundary layer responds to scales of spatial heterogeneity in surface-atmosphere heat and water exchanges. The campaign was conducted from June – October 2019, measuring surface energy fluxes over a heterogeneous forest ecosystem as fluxes transitioned from latent heat-dominated summer through sensible heat-dominated fall. Observations were made by ground, airborne, and satellite platforms within the 10 x 10 km study region, which was chosen to match the scale of a typical model grid cell. The spatial distribution of energy fluxes was observed by an array of 20 eddy covariance towers and a low-flying aircraft. Mesoscale atmospheric properties were measured by a suite of LiDAR and sounding instruments, measuring winds, water vapor, temperature, and boundary layer development. Plant phenology was measured in-situ and mapped remotely using hyperspectral imaging.</p><p>The dense set of multi-scale observations of land-atmosphere exchange collected during the CHEESEHEAD field campaign permits combining the spatial and temporal distribution of energy fluxes with mesoscale surface and atmospheric properties. This provides an unprecedented data foundation to evaluate theoretical explanations of energy balance non-closure, as well as to evaluate methods for scaling surface energy fluxes for improved model-data comparison. Here we show how fluxes calculated using a spatial eddy covariance technique across the 20-tower network compare to those of standard temporal eddy covariance fluxes in order to characterize of the spatial representativeness of single tower eddy covariance measurements. Additionally, we show how spatial EC fluxes can be used to better understand the energy balance over heterogeneous ecosystems.</p>


Sign in / Sign up

Export Citation Format

Share Document