EVALUATION OF THE PERFORMANCE OF AN OZONIZATION SYSTEM FOR THE DISINFECTION OF THE NUTRIENT SOLUTION OF A GREENHOUSE TOMATO CROP

2005 ◽  
pp. 389-394 ◽  
Author(s):  
M.A. Laplante ◽  
D. Brisson ◽  
C. Bovion ◽  
D. Doiron ◽  
L. Gaudreau ◽  
...  
1998 ◽  
pp. 231-238 ◽  
Author(s):  
C. Stanghellini ◽  
W.Th.M. van Meurs ◽  
F. Corver ◽  
E. Van Dullemen ◽  
L. Simonse

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 484-493 ◽  
Author(s):  
Uttam K. Saha ◽  
Athanasios P. Papadopoulos ◽  
Xiuming Hao ◽  
Shalin Khosla

To address the concern that irrigation provides sufficient water to match the crop needs, while not impeding oxygen availability to the roots, we conducted an experiment to develop suitable irrigation schedule(s) for greenhouse tomato (Lycopersicon esculentum Mill.) on rockwool. The experimental treatments incorporated the electrical conductivity (EC) of the nutrient solution in the rockwool slab (slab-EC) along with the water content (WC) in the rockwool slab (slab-WC) as the irrigation decision-making variables. They were: slab-WC ≤ 70% or slab-EC ≥ 1.4× normal or more (T1), slab-WC ≤ 70% or slab-EC ≥ 1.7× normal or more (T2), slab-WC ≤ 80% or slab-EC ≥ 1.4× normal or more (T3), slab-WC ≤ 80% or slab-EC ≥ 1.7× normal or more (T4), and the combined weight loss (WL) 700 g or more (T5) and WL 500 g or more (T6), in which “normal” means the feed solution EC as recommended in the seasonal fertigation schedule for a spring–summer tomato crop. The data on early-season marketable yield, total seasonal marketable yield, and fruit grades indicated the superiority of treatments T1, T2, and T6 over T3, T4, and T5. Better root growth was observed with T1, T2, and T6 and this was also associated with minimized nutrient solution leaching; furthermore, these plants had an abundance of coarse and fine roots, higher photosynthesis and transpiration, higher marketable yield, and a higher water use efficiency. Our results thus established that irrigation based on either a slab water content 70% or less or a 500-g weight loss is the best strategy for rockwool-grown greenhouse tomatoes in the spring–summer season. A variation in slab-EC between 1.4 and 1.7× normal, at a slab-WC of 70% or less, would have no significant effect on root growth, water use, marketable yield, or fruit grades.


2008 ◽  
pp. 1243-1250 ◽  
Author(s):  
G.B. Oztekin ◽  
Y. Tüzel ◽  
I.H. Tüzel ◽  
K.M. Meric

2004 ◽  
pp. 477-482 ◽  
Author(s):  
H. Valdés ◽  
S. Ortega-Farias ◽  
M. Argote ◽  
B. Leyton ◽  
A. Olioso ◽  
...  

2017 ◽  
Vol 40 (13) ◽  
pp. 1908-1919 ◽  
Author(s):  
Antonio Juárez-Maldonado ◽  
Karim de-Alba-Romenus ◽  
América Berenice Morales-Díaz ◽  
Adalberto Benavides-Mendoza

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 769C-769
Author(s):  
J. Lopez ◽  
L.E. Parent ◽  
N. Tremblay ◽  
A. Gosselin

In hydroponic recirculating systems, sulfate ions can accumulate to excessive levels and interfere with other nutrient ions. The objective of this research was to determine the effects of four sulfate concentrations on growth and mineral nutrition of greenhouse tomato plants (Lycopersicon esculentum Mill. cv. Trust). Tomato seeds were sown in flats and subsequently transplanted into rockwool slabs. Ten days after transplanting, plants were given four sulfate concentrations in nutrient solutions (S0 = 0.1, S1 = 5.2, S2 = 10.4, and S4 = 20.8 mM). The plots were arranged in a randomized complete-block design with four replications. Treatment S0 reduced dry weight of the top portion of the plant. A sulfate shortage in the nutrient solution decreased S concentrations in the leaf and decreased fruit number. Activities and concentrations of major ions in solutions expressed in mM or as row-centered logratios were correlated with corresponding foliar concentrations expressed in grams of nutrient per kilogram of dry matter or as row-centered logratios. Data were presented in this manner in order to explore interactive models describing relationships between mineral composition of both nutrient solutions and plant tissues. High concentrations of sulfate ions in the nutrient solution up to 20.8 mM did not affect tomato growth or yield. Tomato plants appeared prone to sulfate deficiency, but tolerant to sulfate concentrations up to 20.8 mM in the nutrient solution.


HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1641-1645 ◽  
Author(s):  
Martin P.N. Gent ◽  
Michael R. Short

Recycling the nutrient solution used for greenhouse vegetable production can prevent groundwater pollution. Recycling could result in an accumulation or deficiency of elements that would be deleterious to plant growth, product quality, and the dietary value of vegetables. Complex fertilizer systems have been developed to maintain appropriate concentrations of all elements in recycled systems. We compared a much simpler system in which all excess solution drained from the plants was recycled without adjustment or dilution compared with a system with no recycling as a control. Crops of greenhouse tomato (Solanum lycopersicon L.) were grown in two years to compare these systems. Differences in composition of solution drained from the plants developed gradually over more than one month. The transition from vegetative to fruit growth, which coincided with warmer weather, resulted in a decreased demand for nitrate, and other nutrients, and an increase in electrical conductivity (EC) of water drained from the root zone. The composition of the fresh solution supplied to the plants was adjusted accordingly. It took a longer time to re-establish an optimum composition for recycled compared with control watering. EC tended to increase in the recycled system. Recycling decreased total yield and fruit size, but marketable yield was unaffected. The marketable fraction increased in the recycled treatment, primarily as a result of fewer fruit with cracked skin. This effect was consistent across seven cultivars. The cultivars differed in this and other defects, but they did not differ in their response to the two watering systems.


HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1508-1512 ◽  
Author(s):  
Isidro Morales ◽  
Miguel Urrestarazu

In recent decades, salinity in the culture of tomatoes has been one of the most studied parameters. This study aimed to evaluate the effect of a moderate increase in salinity, fertigation distribution, and its control using thermography on a soilless culture of grafted tomato. A tomato crop (cv. Ramyle) grafted onto tomato rootstocks (cv. Emperor) was cultivated in coir crop units at the University of Almeria from Nov. 2012 to May 2013. A plot design subdivided with four blocks was used, with salinity values of 2.0 and 2.5 dS·m−1 in the main plots and fertigation distribution systems with either one (DD1) or four (DD4) drip manifolds in the subplots. The crop productivity was measured using total crop yield, commercial value, and size. The quality parameters in the fruits were not significantly affected. Thermographies were used to aid the control of differential transpiration exerted by salinity. The difference in salinity did not significantly affect the total or commercial production. However, despite being grafted plants, there was a statistically significant effect (P ≤ 0.05) on the fruit size distribution when the electrical conductivity (EC) of the nutrient solution was increased from 2.0 to 2.5 dS·m−1, with a lower production (16%) of large fruits and an increased production of smaller fruits. The DD4 system significantly increased large tomato production (22%) compared with DD1, and the quality parameters in the fruits were not significantly affected. As a result of the improvement in tomato size, the DD4 distribution system economically offset the required higher initial expenditure compared with the DD1 system. Thermography was revealed to be a robust, simple, and quick tool for diagnosing the effect of salinity on transpiration.


2020 ◽  
Vol 10 (3) ◽  
pp. 882 ◽  
Author(s):  
Guadalupe López-Díaz ◽  
Angel Carreño-Ortega ◽  
Hicham Fatnassi ◽  
Christine Poncet ◽  
Manuel Díaz-Pérez

Photovoltaic greenhouses have been claimed to be a solution to cover the energy demand of the protected crops sector. Thus, there is a need to know what is the maximum percentage of shading produced by roof-top photovoltaic panels that does not affect crop yields. The present study analyzes the effects of increasing percentages of shading in a greenhouse tomato crop located in the southeast of Spain. For this study, photovoltaic panels have been simulated with opaque sheets located in the roof-top of a north–south oriented greenhouse. Three treatments of top roof shading percentage (15%, 30% and 50%) where studied and compared with the control treatment without shading (0%). During the study, parameters registered were radiation, temperature, pH and electric conductivity of the substrate, crop yields and fruit quality. Results of the analysis show that higher percentages of shading in the roof-top of greenhouses reduce so much available radiation for the crop causing a reduction in the yield and fruit quality, even in Mediterranean areas where radiation is not a limiting factor.


Sign in / Sign up

Export Citation Format

Share Document