EFFECT OF HYDRO-PRIMING ON SEED GERMINATION OF TRIPLOID WATERMELON [CITRULLUS LANATUS (THUNB) MATSUM & NAKAI]

2010 ◽  
pp. 119-126
Author(s):  
Guilan Gu ◽  
Qing Xu ◽  
Xian Zhang ◽  
Qianqian Liang
HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 553C-553b
Author(s):  
S. Grange ◽  
D.I. Leskovar ◽  
L. Pike ◽  
G. Cobb

Triploid watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] consumption is increasing in the United States However, some of the original problems, poor and inconsistent germination, still exist. Seeds of several triploid and diploid watermelon cultivars were subjected to a variety of treatments to improve germination. Control and scarified seeds, by nicking, were incubated at 25 or 30 °C in either 5 or 10 mL H2O or hydrogen peroxide (H2O2). Triploid seed germination was strongly inhibited in all cultivars when seeds were at 10 mL of H2O or H2O2; both nicking and H2O2 increased germination but not equal to rate of the control in 5 mL H2O or H2O2. Germination of diploid cultivars was unaffected by any treatment. Seed morphological measurments indicated that triploid seed has a smaller embryo with a large and highly variable (cv = 105%) air space surrounding the embryonic axis as compared with the diploid seed. These data suggests that triploid watermelon seed germination is not inhibited by the seed coat thickness alone. Seed moisture plays a significant role in germination, emergence, and stand uniformity.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 426B-426
Author(s):  
S. Grange ◽  
D.I. Leskovar ◽  
L. Pike ◽  
G. Cobb

Triploid watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] consumption is increasing in the U.S. However, some of the original problems, poor and inconsistent germination, still exist. Seeds of several triploid and diploid watermelon cultivars were subjected to a variety of treatments to improve germination. Control and scarified seeds, by nicking, were incubated at 25 or 30 °C in either 5 or 10 mL H2O or hydrogen peroxide (H2O2). Triploid seed germination was strongly inhibited in all cultivars when seeds were at 10 mL of the H2O or H2O2; both nicking and H2O2 increased germination, but not equal to rate of the control in 5 mL H2O or H2O2. Germination of diploid cultivars was unaffected by any treatment. Seed morphological measurments indicated that triploid seed has a smaller embryo with a large and highly variable (CV = 105%) air space surrounding the embryonic axis as compared with the diploid seed. These data suggests that triploid watermelon seed germination is not inhibited by the seedcoat thickness alone. Seed moisture plays a significant role in germination, emergence, and stand uniformity.


2015 ◽  
Vol 33 (6) ◽  
pp. 932-940 ◽  
Author(s):  
Phanna Phat ◽  
Sameena Sheikh ◽  
Jeong Hyeon Lim ◽  
Tae Bok Kim ◽  
Mun Ho Seong ◽  
...  

2008 ◽  
Vol 22 (3) ◽  
pp. 467-471 ◽  
Author(s):  
Peter J. Dittmar ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
Katherine M. Jennings

Studies were conducted in 2006 at Clinton and Kinston, NC, to determine the influence of halosulfuron POST (over the crop plant) or POST-directed (to the crop) on growth and yield of transplanted ‘Precious Petite’ and ‘Tri-X-313’ triploid watermelon. Treatments included a nontreated control, 39 g/ha halosulfuron applied POST-directed to 25% of the plant (distal or proximal region), POST-directed to 50% of the plant (distal or proximal; Precious Petite only), and POST. Watermelon treated with halosulfuron displayed chlorotic leaves, shortened internodes, and increased stem splitting. Vines were longest in the nontreated control (Tri-X-313 = 146 cm, Precious Petite = 206 cm) but were shortest in the POST treatment (Tri-X-313 = 88 cm, Precious Petite = 77 cm). Halosulfuron POST to watermelon caused the greatest injury (Tri-X-313 = 64%, Precious Petite = 67%). Halosulfuron directed to 25 or 50% (distal or proximal) of the plant caused less injury than halosulfuron applied POST. Stem splitting was greatest when halosulfuron was applied to the proximal area of the stem compared with POST-directed distal or POST. Internode shortening was greatest in treatments where halosulfuron was applied to the distal region of the stem. However, Tri-X-313 in the POST-directed 25% distal treatment produced similar total and marketable fruit weight as the nontreated control at Clinton. Fruit number did not differ among treatments for either cultivar. At Kinston, Precious Petite nontreated control and POST-directed 25% distal end treatment had greater marketable fruit weight than the POST-directed 50% proximal and POST treatments. The current halosulfuron registration allows POST application between rows or PRE. Limiting halosulfuron contact to no more than 25% of the watermelon plant will likely improve crop tolerance.


2002 ◽  
Vol 12 (3) ◽  
pp. 437-440 ◽  
Author(s):  
Carl E. Motsenbocker ◽  
Ramon A. Arancibia

Triploid watermelon (Citrullus lanatus), commonly called seedless watermelon, is increasing in popularity and market share. The optimum in-row spacing of triploid watermelon has not been studied previously. Triploid watermelon `Crimson Jewel' and `Honeyheart' were grown with drip-irrigation and black plastic mulch at 1-, 2-, 4-, 6-, and 8-ft (0.3-, 0.6-, 1.2-, 1.8-, and 2.4-m) in-row spacings in 1996 and 2-, 3-, 4-, 5-, 6-, 7-, and 8-ft. (0.6-, 0.9-, 1.2-, 1.5-, 1.8-, 2.1-, and 2.4-m) spacings in 1997 to determine the effect of in-row plant spacing on fruit yield. Marketable yield of `Crimson Jewel' was not affected by in-row spacing while narrower in-row spacing resulted in greater `Honeyheart' yield both years. For both cultivars, narrower spacing resulted in the highest number of fruit per acre, but primarily more extrasmall and small fruit. Fruit number per plant, fruit weight per plant, and individual fruit weight were higher at wider spacings, and yield per acre was lower. The data suggest that triploid watermelon yield, fruit weight and number can be adjusted by in-row spacing. Narrower in-row spacing can maximize yields, depending on the specific grower's cultural practices. In wider in-row spacings, the yield of medium and large fruit is maintained with a subsequent decrease in extra small and small fruit. Gross returns per acre were only different for farmers' market prices, not wholesale, and net returns were not significantly influenced by in-row spacing.


2003 ◽  
Vol 13 (1) ◽  
pp. 58-61 ◽  
Author(s):  
Dena C. Fiacchino ◽  
S. Alan Walters

During the 1999 and 2000 growing seasons in Illinois, studies were conducted to determine the influence of two pollinizers (`Crimson Sweet' and `Fiesta') and three pollinizer frequencies (11%, 20%, and 33%) on `Millionaire' seedless watermelon (Citrullus lanatus) quality and yields. More large-sized [>16 lb (7.2 kg)] `Millionaire' watermelons were produced when `Crimson Sweet' was used as the pollinizer compared to `Fiesta', which resulted in `Crimson Sweet' leading to greater marketable and total `Millionaire' yields. Pollinizers responded similarly over the pollinizer frequencies for `Millionaire' watermelon yields as no pollinizer by pollinizer frequency interaction was observed. The 20% and 33% pollinizer frequencies produced similar `Millionaire' yields per acre and both resulted in greater yields compared to the 11% pollinizer frequency. Soluble solids in `Millionaire' fruits were not influenced by pollinizer or pollinizer frequency. However, hollow heart disorder followed a quadratic response with respect to pollinizer frequency with the lowest amount of hollow heart observed at the 33% pollinizer frequency and greatest at the 11% pollinizer frequency. No significant interaction (P ≤ 0.05) was observed for pollinizer by pollinizer frequency for hollow heart disorder in `Millionaire'; although, more hollow heart disorder in `Millionaire' was observed when `Fiesta' was used as the pollinizer.


2007 ◽  
Vol 17 (4) ◽  
pp. 518-522 ◽  
Author(s):  
Joshua H. Freeman ◽  
G.A. Miller ◽  
S.M. Olson ◽  
W.M. Stall

As triploid watermelons (Citrullus lanatus) increase in popularity, production has shifted away from seeded watermelons. To achieve successful fruit set in triploid watermelons, a diploid watermelon cultivar must be planted as a pollen source. Three diploid cultivars in 2005 and seven diploid cultivars in 2006 were evaluated at one and three locations, respectively, to determine their effectiveness as pollenizers. Each cultivar was planted within plots of the triploid watermelons ‘Tri-X 313’ (2005) and ‘Supercrisp’ (2006) with buffers on all sides of the plots to contain pollen flow within individual plots. Performance of pollenizers was based on triploid watermelon yield, soluble solids concentration, and incidence of hollowheart. In 2005, there were no significant differences in total weight, fruit per acre, average weight, or soluble solids concentration among pollenizers. In 2006, significant differences in yield were observed, and plots with ‘Sidekick’ as a pollenizer yielded the highest but were not significantly different from ‘Patron’, ‘SP-1’, ‘Jenny’, or ‘Mickylee’. In 2006, there were no significant differences in fruit per acre, soluble solids concentration, or incidence of hollowheart between pollenizers. The experimental design was successful in isolating pollenizers and there was minimal pollen flow outside of experimental plots as indicated by minimal fruit set in control plots.


HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 85-86 ◽  
Author(s):  
John R. Duval ◽  
D. Scott NeSmith

Seeds of triploid watermelons [Citrullus lanatus (Thunb.) Matsum & Nakai] often germinate poorly, which prevents adequate stand establishment in both field and greenhouse environments. Methods of improving germination and emergence of these expensive seeds would reduce overall risk to growers, thus increasing the crop's market prominence. Seeds of `Genesis' triploid watermelon were subjected to three treatments: 1) seedcoat removal; 2) clipping the seedcoat opposite the radicle end; or 3) no seedcoat alteration; and were germinated on agar in the presence of a 0%, 1%, 2%, 4%, or 8% aqueous H2O2 at constant 28 °C in the dark. Seedcoat removal, clipping, and all levels of H2O2 increased final germination percentages relative to the control (no seedcoat alteration, no H2O2) by as much as 70%. Hydrogen peroxide levels >2% resulted in severe injury to germinating seeds. These findings suggest that germination barriers of triploid watermelon are seedcoat related, and that seedcoat alteration and H2O2 can overcome these barriers.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1118C-1118
Author(s):  
S. Alan Walters

Cucurbit vegetable crops, such as watermelon (Citrullus lanatus), require insect pollination for fruit set, which is usually achieved by placing honey bee (Apismellifera) colonies in a field or relying upon natural bee populations. Pistillate (or female) watermelon flowers require multiple honey bee (or other bee) visitations after visiting staminate (or male) flowers for fruit set, and pollination is even more of a concern in triploid watermelon production since staminate flowers contain mostly nonviable pollen. Six honey bee visitation treatments, 1) no visitation control, 2) two visits, 3) four visits, 4) eight visits, 5) 16 visits, and 6) open-pollinated control, were evaluated to determine the effect of honey bee pollination on `Millionaire' triploid watermelon fruit set, yield, and quality utilizing `Crimson Sweet' at a 33% pollinizer frequency. No differences (P> 0.05) between honey bee pollination treatments were observed for `Millionaire' quality characters (hollow heart disorder or percent soluble solids). The lowest pistillate flower abortion rate (20%) and subsequently the greatest triploid watermelon yields (fruit numbers and weights per hectare) occurred with the openpollinated control compared to all other honey bee visitation treatments. Fruit abortion rates decreased linearly, while fruit numbers and weights per hectare increased linearly as number of honey bee visits to pistillate flowers increased from 0 (no visit control) to the open-pollinated control (≈24 visits). This study indicated that >16 honey bee visits are required to achieve maximum triploid watermelon fruit set and yields, which is twice the number of honey bee visits required by diploid watermelons to achieve similar results.


1999 ◽  
Vol 124 (4) ◽  
pp. 430-432 ◽  
Author(s):  
John R. Duval ◽  
D. Scott NeSmith

Production of triploid watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] transplants is hindered by poor, inconsistent emergence, and frequent seed coat adherence to cotyledons. Seed coat adherence leads to weakened and slow growing plants. High seed costs, coupled with stand establishment problems, discourages transplant producers from growing this crop. Improvement of triploid watermelon emergence will lessen financial risks to growers and transplant producers and will provide a more reliable production system. Mechanical scarification was evaluated as a means to overcome inconsistent emergence and seed coat adherence. Seeds of `Genesis' triploid watermelon were placed in a cylinder with 100 g of very coarse sand (1.0 to 2.0 mm diameter) and rotated at 60 rpm for 0, 6, 12, 24, and 48 hours in a series of experiments. Number of emerged seed was recorded daily, to obtain emergence dynamics. No significant differences were observed in seed coat adherence among treatments. The longest duration of scarification However, enhanced emergence as compared to the control in three of four experiments. These data support earlier suggestions that a thick or hard seed coat is a factor contributing to poor germination and emergence of triploid watermelons.


Sign in / Sign up

Export Citation Format

Share Document