GENOME ORGANIZATION OF GENE ENCODING LACHRYMATORY FACTOR SYNTHASE IN ALLIUM CEPA

2012 ◽  
pp. 73-80
Author(s):  
N. Masamura ◽  
J. McCallum ◽  
F. Kenel ◽  
M. Pither-Joyce ◽  
L. Khrustaleva ◽  
...  
2017 ◽  
Vol 12 (9) ◽  
pp. 2296-2304 ◽  
Author(s):  
Josie A. Silvaroli ◽  
Matthew J. Pleshinger ◽  
Surajit Banerjee ◽  
Philip D. Kiser ◽  
Marcin Golczak

2010 ◽  
Vol 21 (2) ◽  
pp. 254-265 ◽  
Author(s):  
Osamu Iwasaki ◽  
Atsunari Tanaka ◽  
Hideki Tanizawa ◽  
Shiv I.S. Grewal ◽  
Ken-ichi Noma

The eukaryotic genome is a complex three-dimensional entity residing in the nucleus. We present evidence that Pol III–transcribed genes such as tRNA and 5S rRNA genes can localize to centromeres and contribute to a global genome organization. Furthermore, we find that ectopic insertion of Pol III genes into a non-Pol III gene locus results in the centromeric localization of the locus. We show that the centromeric localization of Pol III genes is mediated by condensin, which interacts with the Pol III transcription machinery, and that transcription levels of the Pol III genes are negatively correlated with the centromeric localization of Pol III genes. This centromeric localization of Pol III genes initially observed in interphase becomes prominent during mitosis, when chromosomes are condensed. Remarkably, defective mitotic chromosome condensation by a condensin mutation, cut3-477, which reduces the centromeric localization of Pol III genes, is suppressed by a mutation in the sfc3 gene encoding the Pol III transcription factor TFIIIC subunit, sfc3-1. The sfc3-1 mutation promotes the centromeric localization of Pol III genes. Our study suggests there are functional links between the process of the centromeric localization of dispersed Pol III genes, their transcription, and the assembly of condensed mitotic chromosomes.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yuan Zhang ◽  
Mohamed Ameen ◽  
Isaac Perea Gil ◽  
Jennifer Arthur ◽  
Alexandra A Gavidia ◽  
...  

Background: LMNA , a gene encoding A-type lamin proteins (abbreviated as lamin A), is one of the most frequently mutated genes in dilated cardiomyopathy (DCM). The molecular mechanisms underlying cardiomyocyte dysfunction in LMNA -related DCM remain elusive, translating to the lack of disease-specific therapies. Lamin A has been shown to play a critical role in genome organization via interactions with the chromatin at specific regions called lamina-associated domains (LADs). However, little is known about whether DCM-causing LMNA mutations rearrange the genome conformation and chromosome accessibility. The overarching goal of this study is to define the role of genome organization in LMNA -related DCM. Methods: LMNA -related DCM was modeled in vitro using cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) from DCM patients carrying a frameshift mutation in the LMNA gene (c. 348_349insG; p. K117fs) and isogenic controls. We combined genome-wide single cell functional genomic and epigenomic mapping analyses to define the gene regulation and cis-regulatory interactions in isogenic iPSC-CMs. Results: Single-cell RNA-seq revealed global gene dysregulation in LMNA mutant compared to isogenic control iPSC-CMs. The homeodomain transcription factor PRRX1 was significantly upregulated in mutant cells. We showed that LAD integrity is disrupted at the PRRX1 locus in mutant iPSC-CMs. In agreement, DNA fluorescence in situ hybridization (FISH) revealed that the PRRX1 locus loses peripheral association and relocates towards the transcriptionally active nuclear interior in mutant iPSC-CMs. Correspondingly, single-cell assay for transposase accessible chromatin (ATAC)-seq showed increased chromatin co-accessibility at the PRRX1 locus, providing a plausible explanation for ectopic activation of PRRX1 in LMNA mutant iPSC-CMs. Conclusion: Our data suggest that LMNA haploinsufficiency disrupts the structure of LADs, leading to ectopic promoter interactions and altered gene expression in LMNA -related DCM iPSC-CMs. We identified PRRX1 as a promising candidate locus linking changes in LAD organization with gene dysregulation in LMNA -related DCM.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 570 ◽  
Author(s):  
Nada Essawy ◽  
Camille Samson ◽  
Ambre Petitalot ◽  
Sophie Moog ◽  
Anne Bigot ◽  
...  

Emerin is a nuclear envelope protein that contributes to genome organization and cell mechanics. Through its N-terminal LAP2-emerin-MAN1 (LEM)-domain, emerin interacts with the DNA-binding protein barrier-to-autointegration (BAF). Emerin also binds to members of the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Mutations in the gene encoding emerin are responsible for the majority of cases of X-linked Emery-Dreifuss muscular dystrophy (X-EDMD). Most of these mutations lead to an absence of emerin. A few missense and short deletion mutations in the disordered region of emerin are also associated with X-EDMD. More recently, missense and short deletion mutations P22L, ∆K37 and T43I were discovered in emerin LEM-domain, associated with isolated atrial cardiac defects (ACD). Here we reveal which defects, at both the molecular and cellular levels, are elicited by these LEM-domain mutations. Whereas ΔK37 mutation impaired the correct folding of the LEM-domain, P22L and T43I had no impact on the 3D structure of emerin. Surprisingly, all three mutants bound to BAF, albeit with a weaker affinity in the case of ΔK37. In human myofibroblasts derived from a patient’s fibroblasts, emerin ∆K37 was correctly localized at the inner nuclear membrane, but was present at a significantly lower level, indicating that this mutant is abnormally degraded. Moreover, SUN2 was reduced, and these cells were defective in producing actin stress fibers when grown on a stiff substrate and after cyclic stretches. Altogether, our data suggest that the main effect of mutation ΔK37 is to perturb emerin function within the LINC complex in response to mechanical stress.


1979 ◽  
Vol 3 (3) ◽  
pp. 199-203 ◽  
Author(s):  
K.L. Bajaj ◽  
Gurdeep Kaur ◽  
Jarnail Singh ◽  
S.P.S. Gill

2021 ◽  
Author(s):  
Anna G Manjón ◽  
Daan Peric Hupkes ◽  
Ning Qing Liu ◽  
Anoek Friskes ◽  
Stacey Joosten ◽  
...  

AbstractAcquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 (RPE) cells can acquire resistance to taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here we have investigated how the ABCB1 gene is derepressed. We show that activation of the ABCB1 gene is associated with reduced DNA methylation, reduced H3K9 trimethylation and increased H3K27 acetylation at the ABCB1 promoter. In addition, we find that the ABCB1 locus has moved away from the nuclear lamina in the taxol-resistant cells. This raises the question which of these alterations were causal to derepression. Directly modifying DNA methylation or H3K27 methylation had neither significant effect on ABCB1 expression, nor did it promote drug resistance. In contrast, the disruption of Lamin B Receptor (LBR), a component of the nuclear lamina involved in genome organization, did promote the acquisition of a taxol-resistant phenotype in a subset of cells. Using CRISPRa-mediated gene activation, we could further substantiate a model in which disruption of lamina association renders the ABCB1 gene permissive to derepression. Based on these data we propose a model in which nuclear lamina dissociation of a repressed gene allows for its activation, implying that deregulation of the 3D genome topology could play an important role in tumor evolution and the acquisition of drug resistance.


2012 ◽  
Vol 76 (9) ◽  
pp. 1799-1801 ◽  
Author(s):  
Noriya MASAMURA ◽  
Morihiro AOYAGI ◽  
Nobuaki TSUGE ◽  
Takahiro KAMOI ◽  
Shinsuke IMAI

Sign in / Sign up

Export Citation Format

Share Document