Development of molecular markers for fruit skin color in Japanese plum (Prunus salicina Lindl.)

2021 ◽  
pp. 221-226
Author(s):  
A. Fiol ◽  
W. Howad ◽  
A. Surya ◽  
M.J. Aranzana
2021 ◽  
Vol 12 ◽  
Author(s):  
Arnau Fiol ◽  
Beatriz E. García-Gómez ◽  
Federico Jurado-Ruiz ◽  
Konstantinos Alexiou ◽  
Werner Howad ◽  
...  

The red to blue hue of plant organs is caused due to anthocyanins, which are water-soluble flavonoid pigments. The accumulation of these pigments is regulated by a complex of R2R3-MYB transcription factors (TFs), basic-helix-loop-helix (bHLH), and WD-repeat (WDR) proteins (MBW complex). In Rosaceae species, R2R3-MYBs, particularly MYB10 genes, are responsible for part of the natural variation in anthocyanin colors. Japanese plum cultivars, which are hybrids of Prunus salicina, have high variability in the color hue and pattern, going from yellow-green to red and purple-blue, probably as a result of the interspecific hybridization origin of the crop. Because of such variability, Japanese plum can be considered as an excellent model to study the color determination in Rosaceae fruit tree species. Here, we cloned and characterized the alleles of the PsMYB10 genes in the linkage group LG3 region where quantitative trait loci (QTLs) for the organ color have been mapped to other Prunus species. Allele segregation in biparental populations as well as in a panel of varieties, combined with the whole-genome sequence of two varieties with contrasting fruit color, allowed the organization of the MYB10 alleles into haplotypes. With the help of this strategy, alleles were assigned to genes and at least three copies of PsMYB10.1 were identified in some varieties. In total, we observed six haplotypes, which were able to characterize 91.36% of the cultivars. In addition, two alleles of PsMYB10.1 were found to be highly associated with anthocyanin and anthocyanin-less skin. Their expression during the fruit development confirms their role in the fruit skin coloration. Here, we provide a highly efficient molecular marker for the early selection of colored or non-colored fruits in Japanese plum breeding programs.


2012 ◽  
Vol 39 (3) ◽  
pp. 533-543 ◽  
Author(s):  
Basilio Carrasco ◽  
Carole Díaz ◽  
Mario Moya ◽  
Marlene Gebauer ◽  
Rolando García-González

2017 ◽  
Vol 100 ◽  
pp. 332-338 ◽  
Author(s):  
María Roca ◽  
José Julián Ríos ◽  
Alexandra Chahuaris ◽  
Antonio Pérez-Gálvez

2021 ◽  
pp. 61-68
Author(s):  
M. Nicolás-Almansa ◽  
J.A. Salazar ◽  
M. Rubio ◽  
A. Guevara ◽  
A. Carrillo ◽  
...  

2015 ◽  
Vol 37 (4) ◽  
pp. 1089-1104 ◽  
Author(s):  
GUSTAVO BRUNETTO ◽  
GEORGE WELLINGTON BASTOS DE MELO ◽  
MORENO TOSELLI ◽  
MAURIZIO QUARTIERI ◽  
MASSIMO TAGLIAVINI

ABSTRACT Fertilization of temperate fruit trees, such as grapevine ( Vitis spp.), apple ( Malus domestica), and pear ( Pyrus communis) is an important tool to achive maximum yield and fruit quality. Fertilizers are provided when soil fertility does not allow trees to express their genetic potential, and time and rate of application should be scheduled to promote fruit quality. Grapevine berries, must and wine quality are affected principally by N, that regulate the synthesis of some important compounds, such as anthocyanins, which are responsible for coloring of the must and the wine. Fermenation of the must may stop in grapes with low concentration of N because N is requested in high amount by yeasts. An N excess may increase the pulp to peel ratio, diluting the concentration of anthocyanins and promoting the migration of anthocyanins from berries to the growing plant organs; a decrease of grape juice soluble solid concentration is also expected because of an increase in vegetative growth. Potassium is also important for wine quality contributing to adequate berry maturation, concentration of sugars, synthesis of phenols and the regulation of pH and acidity. In apple and pear, Ca and K are important for fruit quality and storage. Potassium is the most important component of fruit, however, any excess should be avoided and an adequate K:Ca balance should be achieved. Adequate concentration of Ca in the fruit prevents pre- and post-harvest fruit disorders and, at the same time, increases tolerance to pathogens. Although N promotes adequate growth soil N availability should be monitored to avoid excessive N uptake that may decrease fruit skin color and storability.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 487 ◽  
Author(s):  
Acuña ◽  
Rivas ◽  
Brambilla ◽  
Cerrillo ◽  
Frusso ◽  
...  

The genetic diversity of 14 Japanese plum (Prunus salicina Lindl) landraces adapted to an ecosystem of alternating flooding and dry conditions was characterized using neutral simple sequence repeat (SSR) markers. Twelve SSRs located in six chromosomes of the Prunus persica reference genome resulted to be polymorphic, thus allowing identification of all the evaluated landraces. Differentiation between individuals was moderate to high (average shared allele distance (DAS) = 0.64), whereas the genetic diversity was high (average indices polymorphism information content (PIC) = 0.62, observed heterozygosity (Ho) = 0.51, unbiased expected heterozygosity (uHe) = 0.70). Clustering and genetic structure approaches grouped all individuals into two major groups that correlated with flesh color. This finding suggests that the intuitive breeding practices of growers tended to select plum trees according to specific phenotypic traits. These neutral markers were adequate for population genetic studies and cultivar identification. Furthermore, we assessed the SSR flanking genome regions (25 kb) in silico to search for candidate genes related to stress resistance or associated with other agronomic traits of interest. Interestingly, at least 26 of the 118 detected genes seem to be related to fruit quality, plant development, and stress resistance. This study suggests that the molecular characterization of specific landraces of Japanese plum that have been adapted to extreme agroecosystems is a useful approach to localize candidate genes which are potentially interesting for breeding.


Sign in / Sign up

Export Citation Format

Share Document