scholarly journals Characterization of Japanese Plum (Prunus salicina) PsMYB10 Alleles Reveals Structural Variation and Polymorphisms Correlating With Fruit Skin Color

2021 ◽  
Vol 12 ◽  
Author(s):  
Arnau Fiol ◽  
Beatriz E. García-Gómez ◽  
Federico Jurado-Ruiz ◽  
Konstantinos Alexiou ◽  
Werner Howad ◽  
...  

The red to blue hue of plant organs is caused due to anthocyanins, which are water-soluble flavonoid pigments. The accumulation of these pigments is regulated by a complex of R2R3-MYB transcription factors (TFs), basic-helix-loop-helix (bHLH), and WD-repeat (WDR) proteins (MBW complex). In Rosaceae species, R2R3-MYBs, particularly MYB10 genes, are responsible for part of the natural variation in anthocyanin colors. Japanese plum cultivars, which are hybrids of Prunus salicina, have high variability in the color hue and pattern, going from yellow-green to red and purple-blue, probably as a result of the interspecific hybridization origin of the crop. Because of such variability, Japanese plum can be considered as an excellent model to study the color determination in Rosaceae fruit tree species. Here, we cloned and characterized the alleles of the PsMYB10 genes in the linkage group LG3 region where quantitative trait loci (QTLs) for the organ color have been mapped to other Prunus species. Allele segregation in biparental populations as well as in a panel of varieties, combined with the whole-genome sequence of two varieties with contrasting fruit color, allowed the organization of the MYB10 alleles into haplotypes. With the help of this strategy, alleles were assigned to genes and at least three copies of PsMYB10.1 were identified in some varieties. In total, we observed six haplotypes, which were able to characterize 91.36% of the cultivars. In addition, two alleles of PsMYB10.1 were found to be highly associated with anthocyanin and anthocyanin-less skin. Their expression during the fruit development confirms their role in the fruit skin coloration. Here, we provide a highly efficient molecular marker for the early selection of colored or non-colored fruits in Japanese plum breeding programs.

2017 ◽  
Vol 100 ◽  
pp. 332-338 ◽  
Author(s):  
María Roca ◽  
José Julián Ríos ◽  
Alexandra Chahuaris ◽  
Antonio Pérez-Gálvez

2021 ◽  
pp. 61-68
Author(s):  
M. Nicolás-Almansa ◽  
J.A. Salazar ◽  
M. Rubio ◽  
A. Guevara ◽  
A. Carrillo ◽  
...  

2015 ◽  
Vol 37 (4) ◽  
pp. 1089-1104 ◽  
Author(s):  
GUSTAVO BRUNETTO ◽  
GEORGE WELLINGTON BASTOS DE MELO ◽  
MORENO TOSELLI ◽  
MAURIZIO QUARTIERI ◽  
MASSIMO TAGLIAVINI

ABSTRACT Fertilization of temperate fruit trees, such as grapevine ( Vitis spp.), apple ( Malus domestica), and pear ( Pyrus communis) is an important tool to achive maximum yield and fruit quality. Fertilizers are provided when soil fertility does not allow trees to express their genetic potential, and time and rate of application should be scheduled to promote fruit quality. Grapevine berries, must and wine quality are affected principally by N, that regulate the synthesis of some important compounds, such as anthocyanins, which are responsible for coloring of the must and the wine. Fermenation of the must may stop in grapes with low concentration of N because N is requested in high amount by yeasts. An N excess may increase the pulp to peel ratio, diluting the concentration of anthocyanins and promoting the migration of anthocyanins from berries to the growing plant organs; a decrease of grape juice soluble solid concentration is also expected because of an increase in vegetative growth. Potassium is also important for wine quality contributing to adequate berry maturation, concentration of sugars, synthesis of phenols and the regulation of pH and acidity. In apple and pear, Ca and K are important for fruit quality and storage. Potassium is the most important component of fruit, however, any excess should be avoided and an adequate K:Ca balance should be achieved. Adequate concentration of Ca in the fruit prevents pre- and post-harvest fruit disorders and, at the same time, increases tolerance to pathogens. Although N promotes adequate growth soil N availability should be monitored to avoid excessive N uptake that may decrease fruit skin color and storability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingwen Wu ◽  
Zetong Lin ◽  
Genghua Chen ◽  
Qingbin Luo ◽  
Qinghua Nie ◽  
...  

Skin color is an important economic trait in meat-type chickens. A uniform bright skin color can increase the sales value of chicken. Chickens with bright yellow skin are more popular in China, especially in the broiler market of South China. However, the skin color of chickens can vary because of differences in breeds, diet, health, and individual genetics. To obtain greater insight into the genetic factors associated with the process of skin pigmentation in chickens, we used a colorimeter and high-resolution skin photographs to measure and analyze the skin color of chickens. By analyzing 534 chickens of the same breed, age, and feed condition, we found that the yellowness values of the chickens varied within this population. A significant positive correlation was found between the cloacal skin yellowness values before and after slaughter, and the cloacal skin yellowness value of live chickens was positively correlated with the overall body skin yellowness value. Additionally, chicken skin yellowness exhibited low heritability, ranging from 0.07 to 0.27. Through RNA sequencing, 882 genes were found to be differentially expressed between the skin with the highest and lowest yellowness values. Some of these differentially expressed genes may play an important role in yellow pigment deposition in chicken skin, which included TLR2B, IYD, SMOC1, ALDH1A3, CYP11A1, FHL2, TECRL, ACACB, TYR, PMEL, and GPR143. In addition, we found that the expression and variations of the BCO2 gene, which is referred to as the yellow skin gene, cannot be used to estimate the skin yellowness value of chickens in this population. These data will help to further our understanding of chicken skin yellowness and might contribute to the selection of specific chicken strains with consistent skin coloration.


2019 ◽  
pp. 1-8
Author(s):  
Jörg C. Gerlach ◽  
C. Johnen ◽  
B. Hartmann ◽  
J. Plettig ◽  
K. Bräutigam ◽  
...  

A skin cell-spray grafting technique that enables the on-site application of freshly isolated autologous single cell suspensions was already applied in many cases on caucasian patients with low skin coloration. Our project hypothesis is that these suspensions contain keratinocytes and vital melanocytes, that are of particular interest for the treatment of patients of darker skin color. To test this, we applied an in vitro model, wherein the feasibility of i) isolating and ii) spraying of freshly isolated autologous melanocyte-keratinocyte cell suspensions was investigated. Primary human epidermal keratinocytes (HEKs) and melanocytes (MCs) were isolated from skin biopsies (n=8). Biochemical parameter, cell counts, cell morphology, growth behavior and immunofluorescence results were compared in two groups using MC cultures and co-cultures of MCs with HEKs. Case information on using the method clinically with one patient is included. The sprayed mixed cell suspensions proliferated in all groups without measurable loss of viability, and MCs exhibited a regular cell morphology in monoculture up to passage 4°. The sprayed MCs and HEKs demonstrated in vitro glucose and lactate metabolism that was comparable to the pipetted controls. In co-culture, well distributed CK14+ HEKs and NKI/beteb+ MCs could be demonstrated, which interacted in the in vitro model. The ratio of HEKs : MCs in our primary cultures were microscopically counted (n=8 each) as mean +/- SD 1,211,000 (+/- 574,343) HEK : 99,625 (+/- 59,025) MC; i.e., a ratio of approx. 12 : 1. Using the isolation method clinically for a patient with dark skin coloration after suffering severe second-degree burns shows a satisfying re-pigmentation of the resulting wound post healing. Freshly isolated spray-on melanocyte/keratinocyte suspensions provide for a considerable amount of viable HEKs and MCs. Using MCs in spray-grafting suspensions could represent a promising approach for treating severe partial-thickness burns and innovative therapy developments that also aim to address cosmetic aspects.


Author(s):  
Emine Ece Mercan ◽  
Mehtap Şahin-Çevik

Abstract Anthocyanins are water-soluble pigments responsible for red, pink, purple or blue coloration in the flesh and/or skin of apple fruit. Since consumers prefer anthocyanin rich fruits due to their health benefits, anthocyanin content is an important trait for marketability of apples. Synthesis and accumulation of anthocyanins are controlled by environmental and genetic factors such as transcription factors (TFs). Two-repeat (R2R3) MYB TFs are involved in the regulation of anthocyanin biosynthesis in plants. In this study, the expression of the MdMYBA and MdMYB3 genes encoding R2R3 type MYB TFs were analyzed in apple cultivars with fruit skin color from green to dark red at different growth stages. Fruit samples were collected from “Scarlet Spur”, “Galaxy Gala”, Golden Delicious” “Granny Smith” apple cultivars with dark red, light red, yellow and green fruits, respectively, at four different time periods after full-bloom. Total RNA was isolated from the peel of the collected fruits and the expression of the MdMYBA and MdMYB3 genes was analyzed by real-time RT-PCR. The expression of the MdMYBA gene started to increase at 92 DAFB and thereafter in red-skin apples; however, no expression was observed at any time points in yellow or green-skin apple cultivars. On the other hand, the MdMYB3 gene was expressed in red-skin and yellow-skin apple cultivars starting at 55 DAFB, but no expression was observed in green apple cultivar at any time of fruit maturation. The expression levels of the MdMYBA and MdMYB3 genes varied in apple fruits with different skin coloration indicating that they play a role regulation of the anthocyanin biosynthesis in apple cultivars during fruit maturation.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 487 ◽  
Author(s):  
Acuña ◽  
Rivas ◽  
Brambilla ◽  
Cerrillo ◽  
Frusso ◽  
...  

The genetic diversity of 14 Japanese plum (Prunus salicina Lindl) landraces adapted to an ecosystem of alternating flooding and dry conditions was characterized using neutral simple sequence repeat (SSR) markers. Twelve SSRs located in six chromosomes of the Prunus persica reference genome resulted to be polymorphic, thus allowing identification of all the evaluated landraces. Differentiation between individuals was moderate to high (average shared allele distance (DAS) = 0.64), whereas the genetic diversity was high (average indices polymorphism information content (PIC) = 0.62, observed heterozygosity (Ho) = 0.51, unbiased expected heterozygosity (uHe) = 0.70). Clustering and genetic structure approaches grouped all individuals into two major groups that correlated with flesh color. This finding suggests that the intuitive breeding practices of growers tended to select plum trees according to specific phenotypic traits. These neutral markers were adequate for population genetic studies and cultivar identification. Furthermore, we assessed the SSR flanking genome regions (25 kb) in silico to search for candidate genes related to stress resistance or associated with other agronomic traits of interest. Interestingly, at least 26 of the 118 detected genes seem to be related to fruit quality, plant development, and stress resistance. This study suggests that the molecular characterization of specific landraces of Japanese plum that have been adapted to extreme agroecosystems is a useful approach to localize candidate genes which are potentially interesting for breeding.


Sign in / Sign up

Export Citation Format

Share Document