The attractiveness of locally made baits of plant origin for capturing Bactrocera dorsalis and Ceratitis cosyra on mango

Fruits ◽  
2021 ◽  
Vol 76 (6) ◽  
pp. 276-281
Author(s):  
V. Umeh ◽  
◽  
O. Aiyelaagbe ◽  
O. Shittu ◽  
◽  
...  
2019 ◽  
Vol 109 (05) ◽  
pp. 649-658
Author(s):  
A. Monsia ◽  
G.S.B. Mègnigbèto ◽  
D. Gnanvossou ◽  
M.F. Karlsson

AbstractParasitoids, released in augmentative biological control programmes, which display a rapid host-location capacity, have a higher likelihood of successfully controlling target pest species. By learning to associate sensory cues to a suitable oviposition site, might parasitoids used as biological control agents, locate hosts more rapidly, and perhaps increase the efficacity of e.g. Tephritidae fruit fly management. We studied associative learning of Fopius arisanus (Hymenoptera: Braconidae) and tested its range of learning in natural and conditional hosts and host fruits, i.e. Bactrocera dorsalis, Zeugodacus cucurbitae, Ceratitis capitata and Ceratitis cosyra (Diptera: Tephritidae) and on fruits (papaya, tomato, banana). Naïve female F. arisanus were compared with experienced wasps, which had been offered infested and non-infested fruit, and been allowed to oviposit. Preferences for olfactory cues from infested fruits were thereafter assessed in a two-choice olfactometer. Naïve and trained parasitoids preference differed in general and non-responders to infested fruits were higher among naïve parasitoids. The trained wasps preferred the fruit infested in the training more than the control fruit, for all combination, except when C. cosyra infested the fruits, hence avoidance behavioural response was observed towards the odour of the infested fruit. Fopius arisanus was capable of behaviourally respond to the learned information, e.g. associative odour learning was achieved, yet limited depending on interaction level, fruit fly and fruit combination. To create F. arisanus preference of an associated odour, it might hence be needed to ensure oviposition in perceived suitable host and host fruit, for the parasitoid learning to become favourable in a biological control setup.


2020 ◽  
Vol 36 (1) ◽  
pp. 118-129
Author(s):  
C. Ebi

Mango (Mangifera indica L.) is an important fruit crop in Nigeria. It is a source of essential vitamins and is also cultivated for its nutritional, medicinal and industrial uses. Fruit flies infest various commercial fruit crops and cause economic damage. Mass trapping and male annihilation technique (MAT) has been the most useful and common means of controlling fruit flies with special focus on Bactrocera dorsalis Hendel (Diptera: Tephritidae) on mangoes. The study evaluated the effectiveness of four types of parapheromones namely, methyl eugenol (liquid and solid forms), cuelure, terpinyl acetate and trimedlure for mass trapping of fruit flies on Mango. Modified Lynfield traps containing the parapheromones were randomly set on the mango orchards in three replicates in Nigeria Horticultural Research Institute (NIHORT) orchard, Okigwe, Imo state, Southeast Nigeria. This study was conducted during the mango fruiting period of 2019 season, when the density of fruit flies peaked. Effect of parapheromones on mean number of damaged dropped fruits was also evaluated. The mean population of B. dorsalis and Ceratitis cosyra was significantly higher (P>0.05) in liquid methyl eugenol traps when compared to other parapheromones. Bactrocera dorsalis recorded more than 90% of the fruit flies that were trapped especially in the first 3 weeks of trapping. In orchard I, Liquid methyl eugenol significantly (P<0.05) trapped highest number of B. dorsalis (270.20) in week I and similar trends were observed in orchard II. There was steady decline in damaged dropped mango fruits as the study progressed (Fig. 1 and 2). Use of liquid methyl eugenol was most effective in trapping B. dorsalis and C. cosyra, and it can be incorporated in Integrated Pest Management (IPM) programmes for the control of fruit flies.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 671
Author(s):  
Shepard Ndlela ◽  
Samira Abuelgasim Mohamed ◽  
Abdelmutalab G.A. Azrag ◽  
Paul Nduati Ndegwa ◽  
George Otieno Ong’amo ◽  
...  

The braconid wasp, Diachasmimorpha longicaudata (Ashmead), was introduced in Kenya from Hawaii for classical biological control of the invasive tephritid, Bactrocera dorsalis Hendel. Following reports that D. longicaudata had formed new associations with Ceratitis cosyra, laboratory experiments were conducted to assess the interaction between the introduced and the native parasitoid of C. cosyra; Psyttalia cosyrae (Wilkinson) under three scenarios: B. dorsalis only, C. cosyra only and mixed populations of the two species. Parasitoids were introduced to the host as sole, sequential and simultaneous releases. Host searching and probing events were five times higher for D. longicaudata than P. cosyrae with both hosts. Total parasitism was highest (78%) when D. longicaudata was released alone on C. cosyra, compared to 20% for P. cosyrae released on the same host. Releases of P. cosyrae on B. dorsalis resulted in 0% parasitism, compared to 64% parasitism by D. longicaudata. Specific parasitism for P. cosyrae was three times higher when P. cosyrae was released first in sequential releases on C. cosyra compared to when it was released after D. longicaudata. These findings suggest that the two parasitoids can both suppress C. cosyra but B. dorsalis acts as a reproductive sink for P. cosyrae. Our findings should form the basis of field investigations where options are much wider for both parasitoids.


2020 ◽  
Vol 2 (1) ◽  
pp. 41-50
Author(s):  
Caroline Muriuki ◽  
◽  
Mary Guantai ◽  
Namikoye Samita ◽  
Joseph Mulwa ◽  
...  

Fruits and vegetables are important source of livelihood to farmers and major horticulture sub sector with high contribution to agricultural GDP in Kenya. This study was conducted to determine diversity and abundance of frugivorous fruit flies in Kandara sub county, Murang’a County in 2018, at a place where first area of low pest population was created in Kenya for Bactrocera dorsalis. Three sets of pheromone traps (Methyl-Eugenol, Cuelure and Trimedlure) were set in six trap stations within farmers’ orchards in four agro-ecological zones (LH1 (Lower Highland Zone), UM1 (Upper Mid-land Zone), UM2, and UM3). The trap catch data was collected fortnightly and data analyzed. Six fruit flies species namely; Bactrocera dorsalis, Ceratitis cosyra, Ceratitis capitata, Zeugodacus cucurbitae, Dacus bivittatus and Perilampsis sp were identified. Bactrocera dorsalis population was significantly (P<.001) different across the four agro-ecologies with lowest densities at LH1 and highest at UM3. Likewise, C. capitata recorded significant (P=0.042) difference densities across the agro-ecological zones, but no significant (P=0.386) difference was recorded for C. cosyra across the agro-ecological zones. Further, there was significant (P=0.012) difference in the number of Perilampsis sp across the agro-ecologies with the highest number recorded in UM1. Both Z. cucurbitae (P=0.061) and D. bivittatus (P=0.056) had low abundance across the agro-ecologies. The peak infestation period differed across the various fruit fly species, whereby B. dorsalis peaked in May, C. capitata in February and C. cosyra in January. The study shows that abundance for the fruit flies is probably related to their preferred hostplant and the weather patterns. We recommend continuous monitoring and intensifying trapping activities during peak periods in order to control the pest and protect fruits from damage. Farmers should be trained on the use of pheromone traps to reduce over-reliance on pesticides. Key words: Agro-ecologies, Bactrocera dorsalis, Ceratitis sp, fruit fly density, Pheromone


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1116-1121
Author(s):  
Pooja P. Thakre ◽  
Vinod Ade ◽  
Shweta Parwe

Coronavirus disease (CoViD-19) is an infection of the respiratory system caused due to various viruses affects the respiratory pathway, and it can spread from one person to another by coughing, sneezing or physical contact. Commonly include cough, cold, fever are the symptoms. Viral diseases increase worldwide concern, including emerging and chronic viruses. The invention of new anti-viral drugs from plants has implicit in the past. The Coronavirus disease 19 (COVID-19) caused due to severe acute respiratory syndrome, which is a transmittable and pathogenic viral infection. Several traditional medicines of plant origin having antimicrobial and anti-inflammatory properties some have been studied for their anti-viral properties and immune-modulating effects. Herbal drugs are now in massive requirement in the developing countries for primary health care not because of their economical but also for better civilising adequacy, improved compatibility with the human body and significantly fewer side effects. This review gives an overview of some critical traditionally used medicinal herbs with anti-viral properties—the literature regarding the drugs of this group, collected from Ayurveda classics. Research articles are collected from published material and discussed per therapeutic actions. Most of the Herbs are with Katu Rasa (pungent) and Ushna Virya (hot potency). They are indicated in diseases, viz. Kasa (cough), Shwas (asthma), Krumi (worm/ infection). Krumihara property drugs which are correlated with anti-viral action helps to prevent against Novel coronavirus infection.


2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Yulia Pujiastuti

The objective of the research were to investigate level parasitization, immature development period, longevity of adult parasitoids, along with number of progeny and parasitoid sex of Psyttalia sp. attacking larvae of Bactrocera dorsalis. This experiment was conducted in Laboratory of Entomology, Department Plant Pest and Diseases Faculty of Agriculture, Sriwijaya University from March to September 2007. The result showed that the average level of parasitization of Psyttalia sp. reached 24.24%. The highest one was 30% and the lowest was 16.7%. The immature development period of Psyttalia sp. ranged from 24-31 days with average 27.5 days. Longevity of imago parasitoids which stored at 5 0C was 14.1 days. In the research, the progeny of parasitoids which produced was females with percentage of females reached 59.99% and percentage of males reached 39.99%.Keywords: fruit flies, Bactrocera dorsalis, parasitoid, Psyttalia sp.


Sign in / Sign up

Export Citation Format

Share Document