scholarly journals OPTIMIZATION OF STATIONARY AND TRANSITIONAL OPERATING MODES OF THE ELECTRICAL COMPLEX IN METAL PROCESSING LINE

2021 ◽  
Vol 11 (3) ◽  
pp. 157-167
Author(s):  
Aleksandr I. DANILUSHKIN ◽  
Vasilij A. DANILUSHKIN

In the electrical complex “induction heater - deforming equipment”, the limiting performance of the complex is the induction heating unit. In this regard, an important task of increasing the effi ciency of the processing complex is to optimize both the design and operating parameters of the induction heating unit. It is shown that the main design parameter infl uencing the energy characteristics of the complex is the length of the heating system. When optimizing the total length of the heater, an iterative model of the process of induction heating of ferromagnetic billets is used. The power distribution algorithm along the length of a two-section heater is a piecewise continuous function. Optimization of the heater length according to the proposed method made it possible to reduce the heater length from 2.8 m to 2.1 m, i.e. by 25%. To search for eff ective control algorithms for non-stationary modes, a refi ned electrothermal model is proposed in the work. It takes into account the nonlinear dependence of the distribution of the power of the sources of internal heat release on the temperature distribution in the metal of the workpieces along the radial and axial coordinates. The problem of fi nding the optimal control of transient modes of a two-section induction heater of methodical action is formulated and solved. The results obtained provide a minimum of energy consumption for heating billets in transient modes under conditions of technological and energy constraints. Variants of starting the heater at various initial temperature states of the load are considered. The results of a comparative analysis of the eff ectiveness of the obtained control algorithms are presented. The structure of the power supply and control system of the induction heating complex is proposed.

2011 ◽  
Vol 1 (2) ◽  
pp. 128-131 ◽  
Author(s):  
V. A DANILUShKIN ◽  
P. I RUBAN ◽  
A. Yu TAYMOLKIN

The questions of mathematical modelling of indirect induction heating viscous oil in heaters and continuous optimization of the power distribution of internal heat sources on the criterion of maximum speed are analysed. It is similar to minimizing the length of the heater for the steady-state regimes of heating. The specificity of the heating of viscous fluids in indirect induction heating consists in the uneven distribution of liquid flow velocity in the cross section. proposed quasi-optimal algorithms for power distribution along the length of the heater in the form of a step function provide energy savings for heating when the technological demands of fidelity to the outlet temperature of the heater.


2020 ◽  
Vol 299 ◽  
pp. 687-692
Author(s):  
Inna I. Barankova ◽  
Uliana V. Mikhailova ◽  
Lyudmila I. Antropova

This article presents the development of energy-saving induction heating technology to accelerate significantly the process of heat treatment of steel wire. The analysis of international trends and prospects of the use of induction heating shows a steady expansion of the applied induction technologies in metallurgy. The article considers the advantages of induction heating in comparison with other competitive technologies. Heat treatment in electro-technical induction units is determined by the interrelated electrical and thermal processes in them, the complex nature of the distribution of internal heat sources, the dependence of the nature of the power distribution of the induction unit on the temperature of the products processed. The features of the applicated in the induction method of heating in the hardware industry for objects previously unused: such as coils of wire and riots of calibrated steel. The results of the study show the influence of the induction method of heating on temperature-time factors to the formation of the structure, to increase the uniformity of heating and the quality of heat treatment of steel wire, calibrated steel in riots, taking into account the technological problem. The authors give the assessment of the effectiveness of medium and high-frequency induction heating of steel wire of various diameters. The evaluation of the increase in the efficiency of an induction heating unit with the simultaneous heat treatment of several filaments of steel wire of the same diameter, combined into a bundle, was made.


Author(s):  
Avijit Chakraborty ◽  
Pradip Kumar Sadhu ◽  
Kallol Bhaumik ◽  
Palash Pal ◽  
Nitai Pal

<p>This paper investigates the behavior of a high frequency parallel quasiresonant<br />inverter fitted domestic induction heater with different switching frequencies. The power semiconductor switch Insulated Gate Bipolar Junction Transistor (IGBT) is incorporated in this high frequency inverter that can operate under ZVS and ZCS conditions during the switching operations at certain switching frequency to reduce switching losses. The proposed induction heating system responds to three different switching frequencies with providing different results. An Insulated Gate Bipolar Junction Transistor (IGBT) provides better efficiency and faster switching operations. After the complete study of the proposed induction heating system at the selected switching frequencies, the results are compared and it is decided that most reliable, efficient and effective operations from the proposed induction heater can be obtained if the switching frequency is selected slightly above the resonant frequency of the tank circuit of the resonant inverter. The proposed scheme is analyzed using Power System<br />Simulator (PSIM) environment.</p>


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


2012 ◽  
Vol 17 (4) ◽  
pp. 51-57
Author(s):  
Andrzej Frązyk ◽  
Piotr Urbanek ◽  
Jacek Kucharski

Abstract Fixed, placed at regular distances inductors for induction heating of a rotating steel cylinder do not provide sufficiently uniform temperature profile along cylinder axis required by modern technologies,. The article examines the influence of inductors movement along the cylinder axis on the reduction of pick-to- pick temperature amplitude.


Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


2018 ◽  
Vol 99 (1-4) ◽  
pp. 583-593 ◽  
Author(s):  
Dong Kyu Kim ◽  
Young Yun Woo ◽  
Kwang Soo Park ◽  
Woo Jeong Sim ◽  
Young Hoon Moon

1995 ◽  
Vol 31 (3) ◽  
pp. 2158-2161 ◽  
Author(s):  
Ghun-Deok Suh ◽  
Hong-Bae Lee ◽  
Song-Yop Hahn ◽  
Tae-Kyung Chung ◽  
Il-Han Park

Sign in / Sign up

Export Citation Format

Share Document