The Interface Between Physical Anthropology and Medical Genetics

1986 ◽  
Vol 8 (1-2) ◽  
pp. 10-12
Author(s):  
Charles Hoff

By the 1950s, revolutionary advances in the basic biological sciences began to have a significant impact on the theory, methods, scientific rigor and scope of physical anthropology. The first of these was the development of Neo-Darwinian evolutionary theory which integrated Medelian genetics, Pearsonian biometrics, evolution by mutation, drift and natural selection, and incorporated these and other genetic concepts into a unified quantitative evolutionary model.

2014 ◽  
Vol 76 (2) ◽  
pp. 132-136 ◽  
Author(s):  
Terri J. Hildebrand ◽  
Fredric R. Govedich ◽  
Bonnie A. Bain

Evolutionary theory is the foundation of the biological sciences, yet conveying it to General Biology students often presents a challenge, especially at larger institutions where student numbers in foundation courses can exceed several hundred per lecture section. We present a pedagogically sound exercise that utilizes a series of simple and inexpensive simulations to convey the concept of evolution through mutation and natural selection. Questions after each simulation expand student comprehension; a class discussion encourages advanced thinking on mutation and speciation. A final paper requires students to synthesize their learning by summarizing selected papers on these topics. A grading rubric for the papers is included.


2020 ◽  
Author(s):  
Mohammad Salahshour

As cooperation incurs a cost to the cooperator for others to benefit, its evolution seems to contradict natural selection. How evolution has resolved this obstacle, has been among the most intensely studied questions in the evolutionary theory in recent decades. Here, by showing that competition between public resources provides a simple mechanism for cooperation to flourish, we uncover a novel road to the evolution of cooperation. Such a mechanism can be at work in many biological or social contexts where individuals can form different groups or join different institutions to perform a collective action task, or when they can choose between different collective actions, with different profitability. As a simple evolutionary model suggests, in such a context, defectors tend to join the highest quality resource. This allows cooperators to survive and out-compete defectors by sheltering in a lower quality resource. Cooperation level is maximized however, when the qualities of the two highest quality resources are similar, and thus, they can perform the most competitively to attract individuals.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008703
Author(s):  
Mohammad Salahshour

As cooperation incurs a cost to the cooperator for others to benefit, its evolution seems to contradict natural selection. How evolution has resolved this obstacle has been among the most intensely studied questions in evolutionary theory in recent decades. Here, we show that having a choice between different public resources provides a simple mechanism for cooperation to flourish. Such a mechanism can be at work in many biological or social contexts where individuals can form different groups or join different institutions to perform a collective action task, or when they can choose between collective actions with different profitability. As a simple evolutionary model suggests, defectors tend to join the highest quality resource in such a context. This allows cooperators to survive and out-compete defectors by sheltering in a lower quality resource. Cooperation is maximized, however, when the qualities of the two highest quality resources are similar, and thus, they are almost interchangeable.


Author(s):  
Michael Ruse

Charles Robert Darwin, the English naturalist, published On the Origin of Species in 1859 and the follow-up work The Descent of Man in 1871. In these works, he argued for his theory of evolution through natural selection, applying it to all organisms, living and dead, including our own species, Homo sapiens. Although controversial from the start, Darwin’s thinking was deeply embedded in the culture of his day, that of a middle-class Englishman. Evolution as such was an immediate success in scientific circles, but although the mechanism of selection had supporters in the scientific community (especially among those working with fast-breeding organisms), its real success was in the popular domain. Natural selection, and particularly the side mechanism of sexual selection, were known to all and popular themes in fiction and elsewhere.


Author(s):  
Stéphane Schmitt

The problem of the repeated parts of organisms was at the center of the biological sciences as early as the first decades of the 19th century. Some concepts and theories (e.g., serial homology, unity of plan, or colonial theory) introduced in order to explain the similarity as well as the differences between the repeated structures of an organism were reused throughout the 19th and the 20th century, in spite of the fundamental changes during this long period that saw the diffusion of the evolutionary theory, the rise of experimental approaches, and the emergence of new fields and disciplines. Interestingly, this conceptual heritage was at the core of any attempt to unify the problems of inheritance, development, and evolution, in particular in the last decades, with the rise of “evo-devo.” This chapter examines the conditions of this theoretical continuity and the challenges it brings out for the current evolutionary sciences.


Author(s):  
James Aaron Green

Abstract In Geological Evidences of the Antiquity of Man (1863), Charles Lyell appraised the distinct contribution made by his protégé, Charles Darwin (On the Origin of Species (1859)), to evolutionary theory: ‘Progression … is not a necessary accompaniment of variation and natural selection [… Darwin’s theory accounts] equally well for what is called degradation, or a retrogressive movement towards a simple structure’. In Rhoda Broughton’s first novel, Not Wisely, but Too Well (1867), written contemporaneously with Lyell’s book, the Crystal Palace at Sydenham prompts precisely this sort of Darwinian ambivalence to progress; but whether British civilization ‘advance[s] or retreat[s]’, her narrator adds that this prophesized state ‘will not be in our days’ – its realization exceeds the single lifespan. This article argues that Not Wisely, but Too Well is attentive to the irreconcilability of Darwinism to the Victorian ‘idea of progress’: Broughton’s novel, distinctly from its peers, raises the retrogressive and nihilistic potentials of Darwin’s theory and purposes them to reflect on the status of the individual in mid-century Britain.


2021 ◽  
Author(s):  
Charles H. Pence

Recent arguments concerning the nature of causation in evolutionary theory, now often known as the debate between the 'causalist' and 'statisticalist' positions, have involved answers to a variety of independent questions – definitions of key evolutionary concepts like natural selection, fitness, and genetic drift; causation in multi-level systems; or the nature of evolutionary explanations, among others. This Element offers a way to disentangle one set of these questions surrounding the causal structure of natural selection. Doing so allows us to clearly reconstruct the approach that some of these major competing interpretations of evolutionary theory have to this causal structure, highlighting particular features of philosophical interest within each. Further, those features concern problems not exclusive to the philosophy of biology. Connections between them and, in two case studies, contemporary metaphysics and philosophy of physics demonstrate the potential value of broader collaboration in the understanding of evolution.


2017 ◽  
Vol 7 (5) ◽  
pp. 20160145 ◽  
Author(s):  
Douglas J. Futuyma

Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an ‘extended evolutionary synthesis’. ‘Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected ‘process’ of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.


2017 ◽  
Vol 14 (3) ◽  
Author(s):  
Gláucia Oliveira da Silva

Abstract My objective is to discuss the persistence of the notion of natural selection in the biological sciences, exploring the fact that: (1) this notion, just like the term culture in anthropology, is historically an inaugural concept in its particular scientific field, and, insofar as both possess a value of heuristic delimitation, both thus came to be considered as explanatory concepts, although today they may be more widely accepted as descriptive in kind; (2) this persistence seems to be equally linked to the fact that the term combines randomness and teleology, but without foregrounding the inherent contradiction; (3) the anthropomorphic metaphors generally used in the description of biological processes, by attributing intentionality to beings lacking in self-determination, presume the existence of a nature defined by processes oriented towards precise ends, endorsing the finalism that, I believe, underlies the idea of natural selection; (4) and, finally, I think that ‘culture’ and ‘natural selection’ correspond to disciplinary labels - for social anthropology and biology respectively - that arose in Victorian Britain, as defined by the Great Divide, but they no longer have explanatory power.


2015 ◽  
Vol 12 (104) ◽  
pp. 20141226 ◽  
Author(s):  
Chiara Marletto

Neo-Darwinian evolutionary theory explains how the appearance of purposive design in the adaptations of living organisms can have come about without their intentionally being designed. The explanation relies crucially on the possibility of certain physical processes : mainly, gene replication and natural selection . In this paper, I show that for those processes to be possible without the design of biological adaptations being encoded in the laws of physics, those laws must have certain other properties. The theory of what these properties are is not part of evolution theory proper, yet without it the neo-Darwinian theory does not fully achieve its purpose of explaining the appearance of design. To this end, I apply constructor theory's new mode of explanation to express exactly within physics the appearance of design, no-design laws, and the logic of self-reproduction and natural selection. I conclude that self-reproduction, replication and natural selection are possible under no-design laws, the only non-trivial condition being that they allow digital information to be physically instantiated. This has an exact characterization in the constructor theory of information. I also show that under no-design laws an accurate replicator requires the existence of a ‘vehicle’ constituting, together with the replicator, a self-reproducer.


Sign in / Sign up

Export Citation Format

Share Document