2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Azizul Moqsud

AbstractIn this research, bioremediation of tsunami-affected polluted soil has been conducted by using collective microorganisms and recycled waste glass. The Tohoku earthquake, which was a mega earthquake in Japan triggered a huge tsunami on March 11th, 2011 that caused immeasurable damage to the geo-environmental conditions by polluting the soil with heavy metals and excessive salt content. Traditional methods to clean this polluted soil was not possible due to the excess cost and efforts. Laboratory experiments were conducted to examine the capability of bioremediation of saline soil by using recycled waste glass. Different collective microorganisms which were incubated inside the laboratory were used. The electrical conductivity (EC) was measured at different specified depths. It was noticed that the electrical conductivity decreased with the assist of the microbial metabolisms significantly. Collective microorganisms (CM2) were the highly capable to reduce salinity (up to 75%) while using recycled waste glass as their habitat.


2017 ◽  
Vol 2 (5) ◽  
pp. 74-85 ◽  
Author(s):  
Abdul Rahman Conteh ◽  
◽  
Alusaine Edward Samura ◽  
Emmanuel Hinckley ◽  
Osman Nabay ◽  
...  

Author(s):  
Mohammad Tarique Zeyad ◽  
Waquar Akhter Ansari ◽  
Mohd Aamir ◽  
Ram Krishna ◽  
Sushil Kumar Singh ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 1565 ◽  
Author(s):  
Abraham Mulu Oljira ◽  
Tabassum Hussain ◽  
Tatoba R. Waghmode ◽  
Huicheng Zhao ◽  
Hongyong Sun ◽  
...  

Soil salinity is one of the most important abiotic stresses limiting plant growth and productivity. The breeding of salt-tolerant wheat cultivars has substantially relieved the adverse effects of salt stress. Complementing these cultivars with growth-promoting microbes has the potential to stimulate and further enhance their salt tolerance. In this study, two fungal isolates, Th4 and Th6, and one bacterial isolate, C7, were isolated. The phylogenetic analyses suggested that these isolates were closely related to Trichoderma yunnanense, Trichoderma afroharzianum, and Bacillus licheniformis, respectively. These isolates produced indole-3-acetic acid (IAA) under salt stress (200 mM). The abilities of these isolates to enhance salt tolerance were investigated by seed coatings on salt-sensitive and salt-tolerant wheat cultivars. Salt stress (S), cultivar (C), and microbial treatment (M) significantly affected water use efficiency. The interaction effect of M x S significantly correlated with all photosynthetic parameters investigated. Treatments with Trichoderma isolates enhanced net photosynthesis, water use efficiency and biomass production. Principal component analysis revealed that the influences of microbial isolates on the photosynthetic parameters of the different wheat cultivars differed substantially. This study illustrated that Trichoderma isolates enhance the growth of wheat under salt stress and demonstrated the potential of using these isolates as plant biostimulants.


Author(s):  
Guanghui Guo ◽  
Mei Lei ◽  
Yanwen Wang ◽  
Bo Song ◽  
Jun Yang

This study investigated the accumulation of As, Cd, and Pb in 16 wheat cultivars and the associated health risks for the inhabitants of Jiyuan, China. The results indicated that the concentrations of As, Cd, and Pb decreased in the order of root > leaf > stem > grain. The concentrations of As, Cd, and Pb in wheat grains varied from 0.13 for Pingan8 to 0.34 mg kg−1 for Zhengmai7698, 0.10 for Luomai26 to 0.25 mg kg−1 for Zhengmai7698, and 0.12 for Zhoumai207 to 0.42 mg kg−1 for Zhengmai379, respectively. There were significant differences in the bioaccumulation factors of As, Cd, and Pb among the 16 wheat cultivars. Cd was more readily accumulated to higher levels than As and Pb in wheat. The Target Hazard Quotients (THQs) of Cd and Pb in the grains from 16 wheat cultivars were below 1, while As THQ exceeded 1. The lowest detrimental human health effects via wheat consumption were found in cultivar AY58 among the 16 wheat cultivars, with total THQs (TTHQs) of 1.82 for children and 1.60 for adults, suggesting that children absorb more heavy metals than adults and they are more vulnerable to the adverse effects of these metals.


2020 ◽  
Vol 27 (5) ◽  
pp. 1191-1194 ◽  
Author(s):  
Nida Idrees ◽  
Robeena Sarah ◽  
Baby Tabassum ◽  
Elsayed Fathi Abd_Allah

Sign in / Sign up

Export Citation Format

Share Document