scholarly journals Some of the methods used to solve complete and incomplete differential equations

Author(s):  
BASHEER ABD AL-RIDA SADIQ

This paper studies the methods used to solve complete and in complete differential equations and types of first order and second order and Exact differential equation to solve integration general in This equation Fur there more, and the Special cases to find the integration factor use solve those types of equations is use as well,supported by a relevant variety of examples.

1987 ◽  
Vol 35 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Renfrey B. Potts

The Weierstrass elliptic function satisfies a nonlinear first order and a nonlinear second order differential equation. It is shown that these differential equations can be discretized in such a way that the solutions of the resulting difference equations exactly coincide with the corresponding values of the elliptic function.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1937
Author(s):  
Yakun Wang ◽  
Fanwei Meng

In this paper, we focus on the second-order neutral differential equations with deviating arguments which are under the canonical condition. New oscillation criteria are established, which are based on a first-order delay differential equation and generalized Riccati transformations. The idea of symmetry is a useful tool, not only guiding us in the right way to study this function but also simplifies our proof. Our results are generalizations of some previous results and we provide an example to illustrate the main results.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1178-1184
Author(s):  
Shanti S Kandala ◽  
Surya Samukham ◽  
Thomas K Uchida ◽  
C. P. Vyasarayani

The dynamics of time-delay systems are governed by delay differential equations, which are infinite dimensional and can pose computational challenges. Several methods have been proposed for studying the stability characteristics of delay differential equations. One such method employs Galerkin approximations to convert delay differential equations into partial differential equations with boundary conditions; the partial differential equations are then converted into systems of ordinary differential equations, whereupon standard ordinary differential equation methods can be applied. The Galerkin approximation method can be applied to a second-order delay differential equation in two ways: either by converting into a second-order partial differential equation and then into a system of second-order ordinary differential equations (the “second-order Galerkin” method) or by first expressing as two first-order delay differential equations and converting into a system of first-order partial differential equations and then into a first-order ordinary differential equation system (the “first-order Galerkin” method). In this paper, we demonstrate that these subtly different formulation procedures lead to different roots of the characteristic polynomial. In particular, the second-order Galerkin method produces spurious roots near the origin, which must then be identified through substitution into the characteristic polynomial of the original delay differential equation. However, spurious roots do not arise if the first-order Galerkin method is used, which can reduce computation time and simplify stability analyses. We describe these two formulation strategies and present numerical examples to highlight their important differences.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Tanusri Ghosh ◽  
Omar Bazighifan

AbstractIn this work, we present sufficient conditions for oscillation of all solutions of a second-order functional differential equation. We consider two special cases when $\gamma >\beta $ γ > β and $\gamma <\beta $ γ < β . This new theorem complements and improves a number of results reported in the literature. Finally, we provide examples illustrating our results and state an open problem.


Author(s):  
O. V. Zadorozhnaya ◽  
V. K. Kochetkov

The paper deals with treating some study methods of the equation integrability of a certain type that are little studied in the theory of differential equations. It is known that a significant part of the differential equations cannot be integrated. Then, to develop methods for their study is, certainly, of scientific interest. The obtained results, formulated as theorems and statements, are of scientific and practical interest because of their importance for applications in modern science.In the paper we present an alternative method for studying the integrability of both linear and nonlinear differential equations of the second order. An introduction of parameters allowed us to develop a study method for the integrability of ordinary differential equations of the second order. We also formulate the theorems describing some General conditions for the integrability of the second-order linear equation and consider special cases of integrability, which arise out of the above facts.Based on the obtained parameter method, some General conditions for the integrability of the nonlinear differential equation of the second order are given, and the consequences of these General conditions are indicated.We have obtained new results related to the construction and development of methods for studying the differential equation to which some types of differential equations are reduced and laid the foundations for a rigorous and systematic study of the introduced special nonlinear differential equation of the second order.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


1988 ◽  
Vol 03 (04) ◽  
pp. 953-1021 ◽  
Author(s):  
RICCARDO D’AURIA ◽  
PIETRO FRÉ ◽  
MARIO RACITI ◽  
FRANCO RIVA

Using a theorem by Bonora-Pasti and Tonin on the existence of a solution for D=10N=1 Bianchi identities in the presence of a Lorentz Chern Simons term, we find an explicit parametrization of the superspace curvatures. Our solution depends only on one free parameter which can be reabsorbed in a field redefinition of the dilaton and of the gravitello. We emphasize that the essential point which enables us to obtain a closed form for the curvature parametrizations and hence for the supersymmetry transformation rules is the use of first order formalism. The spin connection is known once the torsion is known. This latter, rather than being identified with Hµνρ as it is usually done in the literature, is related to it by a differential equation which reduces to the algebraic relation Hµνρ = - 3Tµνρ e4/3σ only at γ1=0 (γ1 being proportional to κ/g2). The solution of the Bianchi identities exhibited in this paper corresponds to a D=10 anomaly free supergravity (AFS). This theory is unique in first order formalism but corresponds to various theories in second order formalism. Indeed the torsion equation is a differential equation which, in order to be solved must be supplemented with boundary conditions. One wonders whether supplemented with a judicious choice of boundary conditions for the torsion equation, AFS yields all the interaction terms found in the effective theory of the heterotic string (ETHS). In this respect two remarks are in order. Firstly it appears that solving the torsion equation iteratively with Tµνρ = -1/3Hµνρ e-4/3σ as starting point all the terms of ETHS except those with a ζ(3) coefficient show up. (Whether the coefficient agree is still to be checked.) Secondly, as shown in this paper the rheonomic solution of the super Poincaré Bianchi identities is unique. Hence additional interaction terms can be added to the Lagrangian only by modifying the rheonomic parametrization of the [Formula: see text]-curvature. The only assumption made in our paper is that [Formula: see text] has at most ψ∧ψ∧V components (sector (1,2)). Correspondingly the only room left for a modification of the present theory is the addition of a (0, 3) part in the rheonomic parametrization of [Formula: see text]. When this work was already finished a conjecture was published by Lechner Pasti and Tonin that such a generalization of AFS might exist and be responsible for the ζ(3) missing term. Indeed if we were able to solve the [Formula: see text]-Bianchi with this new (0, 3)-part then the torsion equation would be modified via new terms which, in second order formalism, lead to additional gravitational interactions. The equation of motion of Anomaly Free Supergravity can be worked out from the Bianchi identities: we indicate through which steps. The corresponding Lagrangian could be constructed with the standard procedures of the rheonomy approach. In this paper we limit ourselves to the bosonic sector of such a Lagrangian and we show that it can indeed be constructed in such a way as to produce the relation between Hµνρ and Tµνρ as a variational equation.


1931 ◽  
Vol 27 (4) ◽  
pp. 546-552 ◽  
Author(s):  
E. C. Bullard ◽  
P. B. Moon

A mechanical method of integrating a second-order differential equation, with any boundary conditions, is described and its applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document