scholarly journals A Novel Deep Learning Pipeline Architecture based on CNN to Detect Covid-19 in Chest X-ray Images

Author(s):  
Putra Sumari, Saqib Jamal Syed, Laith Abualigah

Covid-19 is a severe public health problem worldwide. To date, it has spanned worldwide, with 24.6 million infected with 835,843 confirm the death. Covid-19 detection is indeed an important task and has to be done as quickly as possible so that treatment and monitoring can be carried out early. The current world standard RT-PCR screening for Covid-19 detection has to cope with the world population's great demand. There is a need to have an alternative way to cope with the demands. It has to be a quick and accurate detection procedure, such as using a chest x-ray for Covid-19 detection. This paper proposes a deep learning pipeline architecture called Gray Level Co-occurrence Matrix GLCM) with Convolutional Neural Network (CNN) for Covid-19 detection using chest X-ray image. The proposed method has two main diagnosis features, a quicker diagnosis, and a detailed diagnosis. The quicker diagnosis uses few GLCM features and a standard neural network (NN) algorithm to detect Covid-19 symptoms. It is a suitable method for rural areas where computing resources are minimal. The detailed diagnosis uses huge image pixel features and a deep convolutional neural network (CNN) algorithm to detect Covid-19 symptoms. It is a suitable method for places where computing resources are sufficient. The proposed work provides the highest classification performance, with 97.06% accuracy compared to other similar works.

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Vina Ayumi ◽  
Ida Nurhaida

Deteksi dini terhadap adanya indikasi pasien dengan gejala COVID-19 perlu dilakukan untuk mengurangi penyebaran virus. Salah satu cara yang dapat dilakukan untuk mendeteksi virus COVID-19 adalah dengan cara mempelajari citra chest x-ray pasien dengan gejala Covid-19. Citra chest x-ray dianggap mampu menggambarkan kondisi paru-paru pasien COVID-19 sebagai alat bantu untuk diagnosa klinis. Penelitian ini mengusulkan pendekatan deep learning berbasis convolutional neural network (CNN) untuk klasifikasi gejala COVID-19 melalui citra chest X-Ray. Evaluasi performa metode yang diusulkan akan menggunakan perhitungan accuracy, precision, recall, f1-score, dan cohens kappa. Penelitian ini menggunakan model CNN dengan 2 lapis layer convolusi dan maxpoling serta fully-connected layer untuk output. Parameter-parameter yang digunakan diantaranya batch_size = 32, epoch = 50, learning_rate = 0.001, dengan optimizer yaitu Adam. Nilai akurasi validasi (val_acc) terbaik diperoleh pada epoch ke-49 dengan nilai 0.9606, nilai loss validasi (val_loss) 0.1471, akurasi training (acc) 0.9405, dan loss training (loss) 0.2558.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


Author(s):  
Nicole P. Mugova ◽  
Mohammed M. Abdelsamea ◽  
Mohamed M. Gaber

Covid-19 is a growing issue in society and there is a need for resources to manage the disease. This paper looks at studying the effect of class decomposition in our previously proposed deep Convolutional Neural Network, called DeTraC (Decompose, Transfer and Compose). DeTraC has the ability to robustly detect and predict Covid-19 from chest X-ray images. The experimental results showed that changing the number of clusters affected the performance of DeTraC and influenced the accuracy of the model. As the number of clusters increased, the accuracy decreased for the shallow tuning mode but increased for the deep tuning mode. This shows the importance of using suitable hyperparameter settings in order to get the best results from a deep learning model. The highest accuracy obtained, in this study, was 98.33% from the deep tuning model.


Author(s):  
R. Rohith ◽  
S.P.Syed Ibrahim

Tuberculosis is a life-threatening disease that mainly affects underdeveloped as well as developing nations. While lethal it is often resistive to antibiotics and the safest way to treat a patient is to detect the disease's presence as soon as possible. Various techniques have been developed to diagnose tuberculosis and radiography of the chest is one of such methods that works well for over a decade.. Though an effective method still the success depends on the medical officer who examines the chest X-rays. Thus ,this paper proposes an approach for detecting X-ray abnormalities using deep learning. The systems output is assessed on two open Montgomery and Shenz en chest X-ray datasets and accuracy of 84 percent is achieved.


2021 ◽  
Author(s):  
Muhammad Talha Nafees ◽  
Irshad ullah ◽  
Muhammad Rizwan ◽  
Maaz ullah ◽  
Muhammad Irfanullah Khan ◽  
...  

The early and rapid diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), the main cause of fatal pandemic coronavirus disease 2019 (COVID-19), with the analysis of patients chest X-ray (CXR) images has lifesaving importance for both patients and medical professionals. In this research a very simple novel and robust deep-learning convolutional neural network (CNN) model with less number of trainable-parameters is proposed to assist the radiologists and physicians in the early detection of COVID-19 patients. It also helps to classify patients into COVID-19, pneumonia and normal on the bases of analysis of augmented X-ray images. This augmented dataset contains 4803 COVID-19 from 686 publicly available chest X-ray images along with 5000 normal and 5000 pneumonia samples. These images are divided into 80% training and 20 % validation. The proposed CNN model is trained on training dataset and then tested on validation dataset. This model has a promising performance with a mean accuracy of 92.29%, precision of 99.96%, Specificity of 99.85% along with Sensitivity value of 85.92%. The result can further be improved if more data of expert radiologist is publically available.


2020 ◽  
Author(s):  
kishore Medhi ◽  
Md. Jamil ◽  
Iftekhar Hussain

COVID-19 infection has created a panic across the globe in recent times. Early detection of COVID-19 infection can save many lives in the pre-vailing situation. This virus affects the respiratory system of a person and creates white patchy shadows in the lungs. Deep learning is one of the most effective Artificial Intelligence techniques to analyse chest X-ray images for efficient and reliable COVID-19 screening. In this paper, we have proposed a Deep Convolutional Neural Network method for fast and dependable identification of COVID-19 infection cases from the patient chest X-ray images. To validate the performance of the proposed system, chest X-ray images of more than 150 confirmed COVID-19 patients from the Kaggle data repository are used in the experimentation. The results show that the proposed system identifies the cases with an accuracy of 93%.


Sign in / Sign up

Export Citation Format

Share Document