scholarly journals Multi-component symbiosis of Legumes with beneficial soil microbes: genetic and evolutionary basis of application in sustainable crop production

2011 ◽  
Vol 9 (2) ◽  
pp. 80-94
Author(s):  
Oksana Y Shtark ◽  
Aleksey U Borisov ◽  
Vladimir A Zhukov ◽  
Timofey A Nemankin ◽  
Igor A Tikhonovich

Leguminous plants have a genetic system that provides interaction with different beneficial soil microorganisms (BSM). The system has been formed on the basis of the genetic mechanisms that had arisen during the co-evolution of plants with arbuscular-mycorrhizal (AM) fungi and appeared to provide pre-adaptations for further evolution of interaction with various BSM. A concept of the use of BSM in sustainable agriculture is proposed, which postulates an establishment of the multi-component beneficial plant-microbe communities based on varieties of legumes with high potential for interaction with the BSM. 

2021 ◽  
Author(s):  
Lorenzo Borghi ◽  
Claudio Screpanti ◽  
Alexandre Lumbroso ◽  
Mathilde Lachia ◽  
Christian Gübeli ◽  
...  

Abstract Purpose Arbuscular mycorrhizal fungi (AMF) play important roles in agriculture because of their ability to improve plant resilience against abiotic and biotic stresses. AMF as a technology to promote a more sustainable agriculture holds great potential, yet many factors affect the efficiency of this plant-microbe symbiosis leading to inconsistency in performance. The beneficial symbiosis between plants and AM fungi, also-known-as the mycorrhiza is promoted by strigolactones (SLs), carotenoid derivatives active as phytohormones and rhizosphere signals. Natural SLs are effective at extremely low concentrations, however their bioavailability in soil is scarce because their biosynthesis and exudation are plant-regulated, their degradation is fast and their mobility in soil is limited. Methods Through a broad synthetic chemistry approach, we explored how structurally diverse SL derivatives could improve hyphal branching of Gigaspora spp AMF under laboratory conditions and thus possibly boost mycorrhization into soil. Results We tested twenty-six different derivatives and we could highlight structural enhancements to promote hyphal branching of in vitro germinated AMF spores at equal, and in some cases higher levels compared to natural SLs. A subset of these derivatives was tested for bioavailability, but no clear correlation was found with their activity on hyphal branching. Conclusion This study suggests that we could use a targeted, chemical-design approach to synthetize new SL derivatives to enable enhanced promotion of mycorrhization and potentially enhanced bioavailability compared to natural SLs. Due to the roles of AMF in crop production systems, these results highlight new innovative approaches to promote sustainable agriculture.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Nasser Aliasgharzad ◽  
Saheb Bolandnazar ◽  
Mohammad Neyshabouri ◽  
Nader Chaparzadeh

AbstractDrought is a world-spread problem seriously influencing crop production. Arbuscular mycorrhizal (AM) association and soil microorganisms can help plant growth under water stress condition by improvement of its nutrient and water uptake. In this experiment, onion plants (Allium cepa L. cv. Red Azar Shahr) were inoculated with three AM fungi species (Glomus versiforme, G. intraradices, G. etunicatum) or left un-inoculated as non-mycorrhizal plants, in a sterile or non-sterile sandy loam soil. Plants were irrigated at 7, 9 or 11-day intervals to keep the soil moisture content to field capacity at the irrigation time. Mycorrhizal root colonization decreased (p < 0.05) with an increase in irrigation interval, and the highest root colonization was achieved at 7-day irrigated onions in symbiosis with G. versiforme. Phosphorus content in plant tissue was significantly increased in mycorrhizal than non-mycorrhizal onions. Plants inoculated with G. versiforme at 9-day interval treatment had the highest leaf P content, while the lowest P was observed in non-mycorrhizal plants at all irrigation intervals. Onions inoculated by G. versiforme or G. etunicatum at 9-day irrigation interval had the highest K content. Results revealed that the inoculation of onion plant with G. versiforme or G. etunicatum and increasing irrigation interval up to 9 days, could improve P and K uptake.


Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 7 ◽  
Author(s):  
Meng Yu ◽  
Wei Xie ◽  
Xin Zhang ◽  
Shubin Zhang ◽  
Youshan Wang ◽  
...  

Soil microorganisms play important roles in nutrient mobilization and uptake of mineral nutrition in plants. Agricultural management, such as soil sterilization, can have adverse effects on plant growth because of the elimination of indigenous microorganisms. Arbuscular mycorrhizal (AM) fungi are one of the most important beneficial soil microorganisms for plant growth. However, whether AM fungi can compensate for the loss of indigenous microbial communities to support plant growth and metabolism is largely unknown. In this study, a pot experiment was conducted to investigate the effects of AM fungi on plant growth and secondary metabolism in sterilized and unsterilized soil. We used liquorice (Glycyrrhiza uralensis Fisch.), an important medicinal plant as the host, which was inoculated with the AM fungus Rhizophagus irregularis or not and grown in unsterilized or sterilized soil. Plant photosynthesis traits, plant growth and nutrition level, concentrations of the secondary metabolites, and expression levels of biosynthesis genes were determined. The results showed that soil sterilization decreased plant growth, photosynthesis, and glycyrrhizin and liquiritin accumulation, and moreover, downregulated the expression of related biosynthesis genes. Inoculation with R. irregularis in sterilized soil offset the loss of indigenous microbial communities, resulting in plant growth and glycyrrhizin and liquiritin concentrations similar to those of plants grown in unsterilized soil. Thus, AM fungi could compensate for the loss of indigenous microbial communities by soil sterilization to support plant growth and secondary metabolism.


2018 ◽  
Vol 46 (2) ◽  
pp. 466-473 ◽  
Author(s):  
Yang ZHOU ◽  
He CHANG ◽  
Zengwei FENG ◽  
Xiaodi LIU ◽  
Honghui ZHU ◽  
...  

Arbuscular mycorrhizal (AM) fungi are beneficial symbiotic soil microorganisms and AM technology can find its potential application in the nursery of horticultural industry. When AM fungi have been successfully applied to many wood fruit tree species, little information is available in litchi (Litchi chinensis Sonn.). In this study, the seedlings of two litchi genotypes (‘Baila’ and ‘Heiye’) were inoculated with two AM fungal species (Rhizophagus irregularis and Gigaspora margarita) in the nursery conditions, and the growth and photosynthetic responses of seedlings to AM fungal inoculation were investigated. Results indicated that AM fungi significantly promoted the plant growth of ‘Heiye’ seedlings in terms of biomass, plant height, stem diameter and leaf number, while they slightly decreased these parameters of ‘Baila’. The inoculation effect can be explained by the changes in photosynthetic characteristics induced by AM fungi, because AM fungi increased Amax, Aqe, LSP and decreased LCP of ‘Heiye’ but did not affected those of ‘Baila’. Pn was not affected by AM fungi, however, regression analysis indicated a weaker relationship between biomass and Pn than those between biomass and Amax, LSP or LCP. Our results strongly suggest that AM fungi can differentially affect the seedling growth of litchi genotypes mainly via their effects on photosynthetic characteristics, and that precautions should be taken to select appropriate genotypes as rootstock if AM technology is applied in litchi nursery.


Author(s):  
Haiyang Zhang ◽  
◽  
Jeff R. Powell ◽  

Arbuscular mycorrhizal (AM) fungi assist with plant acquisition of nutrients, with most studies focussing on the nutrient forms taken up and translocated to the host. Recent studies have focussed on how extraradical fungal hyphae can affect nutrient ransformations, leaching and movement. However, it is still unclear the extent that nutrient cycling is influenced in agricultural contexts. Moreover, much of the mechanistic knowledge is limited to a few plants and fungi studied under controlled conditions, suggesting a need for innovation addressing the broader diversity of agricultural AM plant-fungal associations. This chapter summarises how AM fungi can influence specific soil nutrient processes, then focuses specifically on AM fungi in crop production systems and examples of (in)compatibilities in these systems. These research areas are then contextualized with new approaches to understand AM fungal roles in nutrient acquisition and utilisation, which the authors propose will lead to applications in improving nutrient use efficiency of agroecosystems.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Reda E. Abdelhameed ◽  
Nagwa I. Abu-Elsaad ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rabab A. Metwally

Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.


Author(s):  
Yinli Bi ◽  
Linlin Xie ◽  
Zhigang Wang ◽  
Kun Wang ◽  
Wenwen Liu ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi can successfully enhance photosynthesis (Pn) and plants growth in agricultural or grassland ecosystems. However, how the symbionts affect species restoration in sunlight-intensive areas remains largely unexplored. Therefore, this study’s objective was to assess the effect of AM fungi on apricot seedling physiology, within a specific time period, in northwest China. In 2010, an experimental field was established in Shaanxi Province, northwest China. The experimental treatments included two AM fungi inoculation levels (0 or 100 g of AM fungal inoculum per seedling), three shade levels (1900, 1100, and 550 µmol m−2 s−1), and three ages (1, 3, and 5 years) of transplantation. We examined growth, Pn, and morphological indicators of apricot (Prunus sibirica L.) seedling performances in 2011, 2013, and 2015. The colonization rate in mycorrhizal seedlings with similar amounts of shade is higher than the corresponding controls. The mycorrhizal seedling biomass is significantly higher than the corresponding non-mycorrhizal seedling biomass. Generally, Pn, stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are also significantly higher in the mycorrhizal seedlings. Moreover, mycorrhizal seedlings with light shade (LS) have the highest Pn. WUE is increased in non-mycorrhizal seedlings because of the reduction in Tr, while Tr is increased in mycorrhizal seedlings with shade. There is a significant increase in the N, P, and K fractions detected in roots compared with shoots. This means that LS had apparent benefits for mycorrhizal seedlings. Our results also indicate that AM fungi, combined with LS, exert a positive effect on apricot behavior.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Crosino ◽  
Elisa Moscato ◽  
Marco Blangetti ◽  
Gennaro Carotenuto ◽  
Federica Spina ◽  
...  

AbstractShort chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that—alongside low production costs—opens promising perspectives for the large scale use of COs in agriculture.


Author(s):  
Vincenza Cozzolino ◽  
Hiarhi Monda ◽  
Davide Savy ◽  
Vincenzo Di Meo ◽  
Giovanni Vinci ◽  
...  

Abstract Background Increasing the presence of beneficial soil microorganisms is a promising sustainable alternative to support conventional and organic fertilization and may help to improve crop health and productivity. If the application of single bioeffectors has shown satisfactory results, further improvements may arise by combining multiple beneficial soil microorganisms with natural bioactive molecules. Methods In the present work, we investigated in a pot experiment under greenhouse conditions whether inoculation of two phosphate-solubilizing bacteria, Pseudomonas spp. (B2) and Bacillus amyloliquefaciens (B3), alone or in combination with a humic acids (HA) extracted from green compost and/or a commercial inoculum (M) of arbuscular mycorrhizal fungi (AMF), may affect maize growth and soil microbial community. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis were performed to detect changes in the microbial community composition. Results Plant growth, N and P uptake, and mycorrhizal root colonization were found to be larger in all inoculated treatments than in the uninoculated control. The greatest P uptake was found when B. amyloliquefaciens was applied in combination with both HA and arbuscular mycorrhizal fungi (B3HAM), and when Pseudomonas was combined with HA (B2HA). The PLFA-based community profile revealed that inoculation changed the microbial community composition. Gram+/Gram− bacteria, AMF/saprotrophic fungi and bacteria/fungi ratios increased in all inoculated treatments. The greatest values for the AMF PLFA marker (C16:1ω5) and AMF/saprotrophic fungi ratio were found for the B3HAM treatment. Permutation test based on DGGE data confirmed a similar trend, with most significant variations in both bacterial and fungal community structures induced by inoculation of B2 or B3 in combination with HA and M, especially in B3HAM. Conclusions The two community-based datasets indicated changes in the soil microbiome of maize induced by inoculation of B2 or B3 alone or when combined with humic acids and mycorrhizal inoculum, leading to positive effects on plant growth and improved nutrient uptake. Our study implies that appropriate and innovative agricultural management, enhancing the potential contribution of beneficial soil microorganisms as AMF, may result in an improved nutrient use efficiency in plants.


Sign in / Sign up

Export Citation Format

Share Document