Quantification of physiologically significant pulmonary hypertension

1985 ◽  
Vol 66 (6) ◽  
pp. 470-470
Author(s):  
R. A. Zaripov

On the basis of a systematic approach to the analysis of the state of the pulmonary circulation, it is proposed to assess the degree of pulmonary hypertension not by absolute figures of pressure, but in relative values, representing the ratio of pressure in the pulmonary artery to aortic artery, correlated with the proper value.

2000 ◽  
Vol 100 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Toshio NISHIKIMI ◽  
Seiki NAGATA ◽  
Tatsuya SASAKI ◽  
Fumiki YOSHIHARA ◽  
Noritoshi NAGAYA ◽  
...  

Adrenomedullin (AM), a novel hypotensive peptide, preferentially dilates pulmonary vessels rather than systemic vessels. This suggests the possibility that AM is a circulating hormone which participates in regulation of the pulmonary circulation. A recent study revealed that two molecular forms of AM, i.e. a mature, active form of AM (AM-m) and an intermediate, inactive, glycine-extended form of AM (AM-Gly), circulate in human plasma. In the present study we investigated the production and clearance sites and pathophysiological significance of the two molecular forms of AM in the pulmonary circulation in patients with mitral stenosis. We measured the plasma levels of AM-m and total AM (AM-T; AM-m+AM-Gly) using a recently developed specific immunoradiometric assay, and thus calculated plasma AM-Gly levels, in blood samples obtained from the femoral vein, pulmonary artery, left atrium and aorta of 28 consecutive patients with mitral stenosis (20 females and eight males; age 53±10 years). Patients with mitral stenosis had significantly higher venous concentrations of AM-T, AM-Gly and AM-m than age-matched normal controls (AM-T, 15.9±2.5 and 10.6±2.1 pmol/l respectively; AM-Gly, 14.0±2.1 and 9.8±1.9 pmol/l respectively; AM-m, 1.9±0.6 and 1.1±0.3 pmol/l respectively; each P < 0.001). There was a significant decrease in the concentrations of AM-m and AM-T between the pulmonary artery and the left atrium (AM-T, 16.1±2.7 and 14.0±2.4 pmol/l respectively; AM-m, 2.0±0.6 and 0.7±0.2 pmol/l respectively; each P < 0.001); however, there were no differences in plasma AM-Gly levels between the pulmonary artery and the left atrium (14.1±2.3 and 13.5±2.3 pmol/l respectively). The venous concentrations of AM-m, AM-Gly and AM-T showed similar correlations with mean pulmonary artery pressure (AM-T, r = 0.67; AM-Gly, r = 0.63; AM-m, r = 0.59; each P < 0.001) and total pulmonary vascular resistance (AM-T, r = 0.77; AM-Gly, r = 0.70; AM-m, r = 0.75; each P < 0.001). These results suggest that the plasma concentration of AM-m is increased in parallel with those of AM-Gly and AM-T, and that the main site for clearance of AM-m from the plasma is the lung; the extracted AM-m in the lungs may help to attenuate the increased pulmonary arterial resistance in secondary pulmonary hypertension due to mitral stenosis.


2018 ◽  
Vol 3 (2) ◽  
pp. 106
Author(s):  
Jessica Wiryanto ◽  
Ingrid M. Pardede ◽  
Sunanto Ng

Pulmonary hypertension is a common complication of congenital heart disease due to systemic – pulmonary circulation shunt which if left uncorrected leads to increased pulmonary artery pressure, vascular remodeling and further increase of pulmonary vascular resistance. Percutaneous closure of the defect interrupts this shunt thus reducing right heart and pulmonary circulation load and pulmonary artery pressure. In this paper we present two cases of percutaneous secundum atrial septal defect closure complicated by pulmonary hypertension along with echocardiographic evaluation of cardiopulmonary hemodynamic changes before and shortly after device closure. Forty years old and thirty three years old females presented to our clinics with classical symptoms of atrial septal defects, assessment revealed TVG of 37 mmHg and 30 mmHg,shortly after the procedure patient was re-evaluated and revealed TVG of 39 mmHg and 23 mmHg respectively. From these cases we conclude that changes in pulmonary artery pressure is not constantly found after device closure. However both patients display improvements in functional capabilities.


2020 ◽  
Vol 319 (6) ◽  
pp. L1010-L1020
Author(s):  
Rubin Tan ◽  
Jiansha Li ◽  
Fangbo Liu ◽  
Pu Liao ◽  
Matthieu Ruiz ◽  
...  

Phenylalanine levels are associated with pulmonary hypertension in metabolic profiling clinical studies. However, the pathophysiological role of phenylalanine on pulmonary circulation is still unclear. We experimentally addressed the direct impact of phenylalanine on pulmonary circulation in rats and explored the underlying molecular pathway. Phenylalanine was injected intraperitoneally into Sprague-Dawley rats (400 mg/100 g body wt) as a single dose or daily in a chronic manner for 2, 3, and 4 wk. Chronic injection of phenylalanine induced pulmonary hypertension with time-dependent severity, evidenced by elevated pulmonary artery pressure and pulmonary vascular resistance as well as pulmonary artery and right ventricular hypertrophy. Using tandem mass spectrometry analysis, we found a quick twofold increase in blood level of phenylalanine 2 h following injection. This increase led to a significant accumulation of phenylalanine in lung after 4 h, which remained sustained at up to a threefold increase after 4 wk. In addition, a cellular thermal shift assay with lung tissues from phenylalanine-injected rats revealed the binding of phenylalanine to the calcium-sensing receptor (CaSR). In vitro experiments with cultured pulmonary arterial smooth muscle cells showed that phenylalanine activated CaSR, as indicated by an increase in intracellular calcium content, which was attenuated or diminished by the inhibition or knockdown of CaSR. Finally, the global knockout or lung-specific knockdown of CaSR significantly attenuated phenylalanine-induced pulmonary hypertension. Chronic phenylalanine injection induces pulmonary hypertension through binding to CaSR and its subsequent activation. Here, we demonstrate a pathophysiological role of phenylalanine in pulmonary hypertension through the CaSR. This study provides a novel animal model for pulmonary hypertension and reveals a potentially clinically significant role for this metabolite in human pulmonary hypertension as a marker, a mediator of disease, and a possible therapeutic target.


1961 ◽  
Vol 06 (01) ◽  
pp. 025-036 ◽  
Author(s):  
James W. Hampton ◽  
William E. Jaques ◽  
Robert M. Bird ◽  
David M. Selby

Summary1. Infusions containing particulate matter, viz. whole amniotic fluid, amniotic fluid sediment, and glass beads, produce in dogs changes in both early and late phases of the clotting reaction. These changes are associated with the development of pulmonary hypertension.2. When dogs were given an active fibrinolysin followed by an infusion of whole amniotic fluid, the alterations in the clotting mechanism were either delayed or did not appear. No pulmonary hypertension developed in these animals.3. We infer that infusions containing particulate matter will produce in dogs both pulmonary hypertension and changes in the clotting mechanism. Although these are independent changes, both are as closely related to the damage to the pulmonary vessels as they are to the biological nature of the infusions.


2014 ◽  
Vol 12 (4) ◽  
pp. 186-192 ◽  
Author(s):  
David Poch ◽  
Victor Pretorius

Chronic thromboembolic pulmonary hypertension (CTEPH) is defined as a mean pulmonary artery pressure ≥25 mm Hg and pulmonary artery wedge pressure ≤15 mm Hg in the presence of occlusive thrombi within the pulmonary arteries. Surgical pulmonary thromboendarterectomy (PTE) is considered the best treatment option for CTEPH.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 155
Author(s):  
Daniel Morales-Cano ◽  
Bianca Barreira ◽  
Beatriz De Olaiz Navarro ◽  
María Callejo ◽  
Gema Mondejar-Parreño ◽  
...  

Current approved therapies for pulmonary hypertension (PH) aim to restore the balance between endothelial mediators in the pulmonary circulation. These drugs may exert vasodilator effects on poorly oxygenated vessels. This may lead to the derivation of blood perfusion towards low ventilated alveoli, i.e., producing ventilation-perfusion mismatch, with detrimental effects on gas exchange. The aim of this study is to analyze the oxygen-sensitivity in vitro of 25 drugs currently used or potentially useful for PH. Additionally, the study analyses the effectiveness of these vasodilators in the pulmonary vs. the systemic vessels. Vasodilator responses were recorded in pulmonary arteries (PA) and mesenteric arteries (MA) from rats and in human PA in a wire myograph under different oxygen concentrations. None of the studied drugs showed oxygen selectivity, being equally or more effective as vasodilators under conditions of low oxygen as compared to high oxygen levels. The drugs studied showed low pulmonary selectivity, being equally or more effective as vasodilators in systemic than in PA. A similar behavior was observed for the members within each drug family. In conclusion, none of the drugs showed optimal vasodilator profile, which may limit their therapeutic efficacy in PH.


Sign in / Sign up

Export Citation Format

Share Document