scholarly journals Pathological and anatomical changes in the peripheral nervous system in typhus. Morgenstern (Journal of Psychol., Neur. and Psychiatry, 1922)

2021 ◽  
Vol 19 (1) ◽  
pp. 92-92
Author(s):  
M. Weinberg

The author found that in typhus there is, and with regard to the severity of the lesions, a parallelism between the central nervous system and the peripheral. There is no such correspondence between the individual nerves.

Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3735-3743 ◽  
Author(s):  
V. Van De Bor ◽  
R. Walther ◽  
A. Giangrande

In flies, the choice between neuronal and glial fates depends on the asymmetric division of multipotent precursors, the neuroglioblast of the central nervous system and the IIb precursor of the sensory organ lineage. In the central nervous system, the choice between the two fates requires asymmetric distribution of the glial cell deficient/glial cell missing (glide/gcm) RNA in the neuroglioblast. Preferential accumulation of the transcript in one of the daughter cells results in the activation of the glial fate in that cell, which becomes a glial precursor. Here we show that glide/gcm is necessary to induce glial differentiation in the peripheral nervous system. We also present evidence that glide/gcm RNA is not necessary to induce the fate choice in the peripheral multipotent precursor. Indeed, glide/gcm RNA and protein are first detected in one daughter of IIb but not in IIb itself. Thus, glide/gcm is required in both central and peripheral glial cells, but its regulation is context dependent. Strikingly, we have found that only subsets of sensory organs are gliogenic and express glide/gcm. The ability to produce glial cells depends on fixed, lineage related, cues and not on stochastic decisions. Finally, we show that after glide/gcm expression has ceased, the IIb daughter migrates and divides symmetrically to produce several mature glial cells. Thus, the glide/gcm-expressing cell, also called the fifth cell of the sensory organ, is indeed a glial precursor. This is the first reported case of symmetric division in the sensory organ lineage. These data indicate that the organization of the fly peripheral nervous system is more complex than previously thought.


1962 ◽  
Vol 39 (3) ◽  
pp. 319-324
Author(s):  
K. G. DAVEY

1. Addition of a homogenate of corpora cardiaca to the fluid bathing an isolated hind gut of Periplaneta produces an increase in tonus, amplitude, frequency and co-ordination of contractions. 2. The corpus cardiacum acts by stimulating cells in the upper colon to release an indolalkylamine. 3. This amine acts on the mucles through a peripheral nervous system which can function in isolation from the central nervous system.


1959 ◽  
Vol 36 (3) ◽  
pp. 501-511
Author(s):  
M. J. WELLS

1. Octopuses blinded by section of the optic nerves were trained by means of 5-10 V. a.c. shocks to reject objects that they would otherwise take. 2. With trials at 3, 5, or 20 min. intervals, in which the test object was always presented to the same arm, animals learned within four or five trials, thereafter rejecting the test object whenever it was presented. 3. When, after a succession of such negative responses, the object was presented to another arm on the other side of the octopus, the result depended upon the rate of training before the change. Thus the object was taken in the trial immediately following the arm change in nineteen out of twenty-six sets of tests with trials at 3 or 5 min. intervals, but in only two out of twelve sets with trials at 20 min. intervals; further experiments in which changes were made between arms on the same side produced similar results. 4. These results are interpreted as showing that changes occurring as a result of experience directly affecting one arm take a period of several hours to spread and become effective in determining the reactions of the rest. This in turn implies the existence of functionally independent neurone fields representing the individual arms, and is discussed in relation to what is already known about the organization of the tactile system of the octopus.


1949 ◽  
Vol 95 (401) ◽  
pp. 826-841 ◽  
Author(s):  
R. K. Freudenberg ◽  
J. P. S. Robertson

This investigation is not concerned with the clinical indications or results of prefrontal leucotomy, but attempts to re-examine changes following the operation, especially in regard to the impairment of some of the manifestations of the highest integrative psychophysiological functions of the central nervous system that may bring about such alterations. Amongst these we were primarily interested in cognitive changes, but the interpretation of apparent cognitive changes led to the consideration of orectic alterations as well. Such changes have so far been impossible to localize exactly, but are considered to be partly related to the phylogenetically more recent parts of the cerebral cortex. Masserman (1946) compared the mechanism of shock treatment and leucotomy with the effects of alcohol and states that “its main actions are those of a cortical depressant,” as manifested by impairment of finer perceptions and discriminations and a “constriction of the integrative field.” He believes that shock therapies and leucotomy partly produce their results by temporary or permanent decorticating effects, “rendering the individual no longer capable of fine spun fantasies or elaborate delusions.” These decorticating effects can be assumed to be reflected in cognitive, conative and emotional alterations following the operation. The interpretation of change following leucotomy presents many difficulties, one of them being that only dysfunction can be related to structural damage of the frontal lobe and not function. Another is that psychotics or severe neurotics operated upon usually do not have a sufficiently intact pre-operative personality to draw conclusions about the normal functions.


1987 ◽  
Vol 7 (11) ◽  
pp. 4115-4117 ◽  
Author(s):  
J M Le Beau ◽  
O D Wiestler ◽  
G Walter

The expression of two forms of pp60c-src, pp60 and pp60+, was measured in the central nervous system (CNS) and the peripheral nervous system. Both forms were expressed in the CNS, whereas only pp60 was primarily detected in the peripheral nervous system. Our findings suggest that pp60+ may play a role in events important to the CNS.


Sign in / Sign up

Export Citation Format

Share Document