scholarly journals Effect of diet-induced hypercholesterolemia on metabolic processes in the heart, liver, and pancreas in rats

2021 ◽  
Vol 102 (5) ◽  
pp. 663-668
Author(s):  
Z I Mikashinovich ◽  
A V Romashenko ◽  
I A Semenets

Aim. To analyze the biochemical changes in the cells of the heart muscle, liver and pancreas, as well as to establish their pathogenetic significance in diet-induced experimental hypercholesterolemia. Methods. The study was conducted on 65 outbred male rats. During the experiment, the animals were divided into groups: the first (control, n=30) animals that were kept on a general vivarium diet; the second (experimental, n=35) animals with diet-induced hypercholesterolemia for three months by keeping on a special diet. At the end of the experiment, the concentrations of pyruvic acid, lactate, reduced glutathione, the activity of glutathione reductase, and glutathione peroxidase were determined in the tissues by using biochemical methods. The Student's t-test was used for the experimental data of the samples after normality testing. Results. The analysis of energy metabolism indicators in animals with hypercholesterolemia relative to the control group revealed a lower level of pyruvic acid in the heart muscle (0.290.03 mmol/mg protein; p 0.05) and liver (0.250.02 mmol/mg protein; p 0.001). A significantly higher lactate level was recorded in all tissues, most pronounced in the liver (6.730.6 mmol/mg protein; p 0.001). The results obtained indicate the predominance of the anaerobic glycolysis in the tissues and the accumulation of incomplete-oxidation products. The study of the key glutathione-linked enzymes in animals with hypercholesterolemia relative to the control showed a lower activity of glutathione reductase in the pancreas 0.520.05 mmol/mg protein/min (p 0.001), as well as its higher activity in the liver 0.2970.03 mmol/mg protein/min (p 0.001) and heart 13.581.4 mmol/mg protein/min (p 0.001). The activity of glutathione peroxidase and reduced glutathione in all organs remained practically unchanged, or the differences were insignificant. This trend indicates a violation of the antioxidant defense system and oxidative stress. Conclusion. Changes in the metabolic link of adaptive-compensatory responses in the cells of the heart muscle, liver, and, most pronounced in the pancreas, indicate the role of the pancreas as a target organ in the pathogenesis of diet-induced hypercholesterolemia.

2014 ◽  
Vol 17 (1) ◽  
pp. 105-112 ◽  
Author(s):  
A. Spodniewska ◽  
D. Barski ◽  
H. Ziółkowski

AbstractThe study was undertaken to examine the effect of single and combined administration of dimethoate (an OP insecticide) and pyrantel embonate (an anthelmintic agent) on the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GPx) and glutathione reductase (GR) in rats. Dimethoate (Group I) was administered to rats at a dose of 1/10 LD50for 5 consecutive days and pyrantel embonate (Group II) at a dose of 1/5 LD50for 3 consecutive days. The animals of group III were given both of the mentioned above compounds in the same manner as group I and II, but pyrantel embonate was applied on day 3, 4, and 5 from the beginning of dimethoate intoxication. Material from 6 rats randomly selected from each group was obtained after 3, 6 and 12 hours and 2, 7 and 14 days following the last applied dose of the compounds under study. It was found that application of pyrantel embonate caused only slight changes in the analysed parameters i.e. GSH, GPx and GR. Dimethoate administration caused disturbances in the antioxidative system manifested as a decrease in GSH concentration in the liver (max. - 37.7% after 6 hours) and an increase of GPx and GR activities in erythrocytes (max. - 21.7% and 29.6% after 3 hours, respectively), compared to the control group. The profile of changes after combined intoxication was similar, but their intensity was higher compared to the group of animals exposed to dimethoate only. Based on current studies, it was concluded that both dimethoate and pyrantel embonate at the applied doses showed a pro-oxidative activity.


2019 ◽  
Vol 10 (4) ◽  
pp. 438-444
Author(s):  
S. V. Pylypenko ◽  
A. A. Koval

The activity of antioxidant protection enzymes in the blood serum and colon mucosa in rats was studied under the conditions of 28-days administration of omeprazole on its own and omeprazole together with multiprobiotics "Symbiter" and "Apibact". Physiological and biochemical study methods were applied. It was found that after omeprazole administration, the activity of superoxide dismutase in the blood serum decreased, and the activity of catalase increased compared to the control. With the co-administration of omeprazole and multiprobiotics, the activity of superoxide dismutase increased compared to the group of rats that received omeprazole only during the same time, but remained less compared to the control group. The content of reduced glutathione in the blood serum of rats after administration of omeprazole decreased, the activity of glutathione peroxidase and glutathione transferase increased, and the activity of glutathione reductase decreased compared to the control. With co-administration of omeprazole and multiprobiotics, the serum RG content was at the control level, the activity of glutathione reductase exceeded the control values. The activity of glutathione reductase decreased compared to the group receiving omeprazole only. The activity of glutathione reductase increased and did not differ from the control values. In the colon mucosa, superoxide dismutase and catalase activity decreased compared to control. With the combined administration of omeprazole and multiprobiotics, superoxide dismutase and catalase activity increased and even exceeded the control values. With the administration of omeprazole, the reduced glutathione content in the colon mucosa was lower than that in the control. The activity of glutathione peroxidase increased and glutathione transferase and activity of glutathione reductase decreased compared to the control. With co-administration of omeprazole and multiprobiotics to rats, the reduced glutathione content increased compared to the group of rats administered omeprazole only, and even exceeded that in the control.


2021 ◽  
pp. 24-36
Author(s):  
Anatoly Bozhkov ◽  
Ievgeniy Ivanov ◽  
Elena Klimova ◽  
Natalia Kurguzova ◽  
Аndrii Bozhkov ◽  
...  

Abstract: the content of lipid hydroperoxides in the serum and liver mitochondria in animals in the late stages of ontogenesis (12 and 33 months old, Wistar male rats) was investigated. The possible effect of the food additive (“mix factor”) on these parameters in 33 months old animals, if they received this supplement from 22 months age daily throughout life in a dose of 0.05 - 0.06 ml / 100 g of body weight was determined. Moreover, the lifespan of animals was determined if they started taking a mix – factor from 22 months and from 30.5 months age. The influence of the mix – factor on the ability of old animals to perform work was determined in a separate series of experiments. It was shown that from 22 to 33 months the content of lipid hydroperoxides in mitochondria and serum increased by 23% and 41%, respectively. The activity of glutathione peroxidase in the serum, mitochondria and erythrocytes decreased, and the activity of glutathione reductase decreased only in the post-mitochondrial fraction of the liver. At the same time, malate– isocitrate dehydrogenase and 6-phosphate dehydrogenase remained unchanged in 33 months old animals compared with 12 months old animals. If animals from 22 months age received a mix factor with drinking water in a dose of 0.05-0.06 mg / 100 g of body weight every day until the end of life, the content of lipid hydroperoxides and the activity of glutathione peroxidase and glutathione reductase of 33 months old animals did not differ from 12 months old animals. The survival curve in animals receiving the mix factor was shifted to the right from 25 to 28 months of age compared with the survival curve of control animals. If animals began to receive the mix – factor at a very old age (from 30.5 months age) until the end of life, their lifespan was longer than that of the control animals. The last ones lived to 41 months, while the animals of the control group lived to 36 months. At the same time, the mix – factor increased the ability of old animals to do work in the test “running in treadmill”. Key words: aging, redox-system, geroprotectors, lifespan


2018 ◽  
Vol 99 (2) ◽  
pp. 240-244
Author(s):  
E V Vinogradova

Aim. Analysis of biochemical changes in rat muscle tissue after prolonged use of simvastatin. Methods. The study was conducted on mongrel male rats. Three groups were identified: control group (intact animals), comparison group (animals with induced hypercholesterolemia not reeciving the drugs), and experimental group (animals with induced hypercholesterolemia receiving simvastatin 0.0012 g/100 g of weight once a day for 2 months as an aqueous suspension through the esophageal probe). Metabolite concentration of glycolysis (pyruvic acid and lactate), activity of antioxidant protection enzymes (reduced glutathione, superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), titin isoforms and proteolytic fragments of titin and nebulin concentration were determined in the muscles of animals. Results. After administration of simvastatin to animals with induced hypercholesterolemia, a decrease in the concentration of glycolysis metabolites (pyruvic acid and lactate) compared to comparison group was revealed, as well as multidirectional changes in the activity of antioxidant protection enzymes (decrease in activity of superoxide dismutase, glutathione peroxidase, and glutathione reductase, decreased concentration of reduced glutathione, but catalase activity remained unchanged). The analysis of structural changes in animal muscle tissue after administration of simvastatin revealed a decrease in the concentration of NT- and N2A-titin isoforms and practically complete absence of nebulin compared to the animals from the comparison group. At the same time an increase in the concentration of proteolytic fragments of titin (T2) by 1.3 times was recorded. Conclusion. The study showed that the basis of myotoxicity of statins in their long-term use is disintegration of enzyme antioxidant processes, as well as tissue hypoxia, leading to destruction of muscle fibers and prevalence of proteolytic processes.


10.5219/1375 ◽  
2020 ◽  
Vol 14 ◽  
pp. 836-846
Author(s):  
Olena Shatynska ◽  
Oleksandr Tokarskyy ◽  
Petro Lykhatskyi ◽  
Olha Yaremchuk ◽  
Iryna Bandas ◽  
...  

The purpose of the current study was to evaluate the protective properties of dietary magnesium supplementation on pancreatic tissue of rats with alloxan-induced diabetes mellitus. Twenty-five male Wistar rats were split into five groups (control, diabetes, diabetes with 100 mg Mg daily, diabetes with 250 mg Mg daily, diabetes with 500 mg Mg daily) with feeding supplementation starting on day 1, diabetes induction on day 21, and animal sacrifice on day 30. Fasting glucose in blood serum was measured on days 21, 25, 27, and day 30. Glucose metabolism enzymes, namely, lactate dehydrogenase and glucose-6-phosphate dehydrogenase, were measured in pancreatic tissue upon the sacrifice, as well as lipid peroxidation, antioxidant system protective enzymes (catalase and superoxide dismutase), and glutathione system components (glutathione reductase, glutathione peroxidase, and glutathione reduced). Pearson correlation coefficients showed strong negative correlation between serum glucose (control and diabetic animals) and glucose metabolism enzymes, catalase, superoxide dismutase, glutathione peroxidase in pancreatic tissue (r >-0.9, p <0.05), moderate negative correlation with reduced glutathione (r = -0.79, p <0.05), moderate positive correlation with lipid peroxidation index (r = +0.67, p <0.05), weak correlation with glutathione reductase (r = -0.57, p <0.05). Magnesium supplementation slowed down diabetes onset considering fasting glucose levels in rats (p <0.05), as well as partially restored investigated dehydrogenase levels in the pancreas of rats comparing to diabetes group (p <0.05). The lipid peroxidation index varied between treatments showing the dose-dependent influence of Mg2+. Magnesium supplementation partially restored catalase and superoxide dismutase activities in pancreatic tissue, as well as glutathione peroxidase and reduced glutathione levels (p <0.05), while glutathione reductase levels remained unaffected (p >0.05). The obtained results suggested a model, where magnesium ions may have a possible protective effect on pancreatic tissue against the negative influence of alloxan inside β cells of the pancreas.


2022 ◽  
Vol 20 (4) ◽  
pp. 63-70
Author(s):  
O. V. Smirnova ◽  
V. V. Tsukanov ◽  
A. A. Sinyakov ◽  
O. L. Moskalenko ◽  
N. G. Elmanova ◽  
...  

Background. The problem of gastric cancer remains unresolved throughout the world, while chronic atrophic gastritis (CAG) increases the likelihood of its development by 15 times. In the Russian Federation, the incidence of gastric cancer (GC) is among the highest, with it prevailing among males. One of the leading mechanisms in molecular pathology of membranes is lipid peroxidation (LPO). The severity of oxidative membrane damage depends on concomitant diseases, contributing to emergence and progression of pathological processes and development of cancer. Currently, the problem of LPO is unsolved in biological systems.The aim of this study was to investigate the state of LPO and antioxidant defense system in CAG and GC. Materials and methods. The parameters were studied in 45 patients with CAG and 50 patients with GC. The control group included 50 practically healthy volunteers without gastrointestinal complaints, who did not have changes in the gastric mucosa according to the fibroesophagogastroduodenoscopy (FEGDS) findings.Results. In patients with CAG, an increase in malondialdehyde, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase was found in the blood plasma compared with the control group. In patients with CAG, lipid peroxidation was activated, and the malondialdehyde level increased by 3.5 times relative to normal values. At the same time, the body fought against oxidative stress by increasing the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase. All patients with GC showed pronounced oxidative stress in the blood plasma in the form of a 45-fold increase in malondialdehyde. The activity of the main antioxidant enzyme superoxide dismutase was reduced in GC. Catalase was activated, which indicated pronounced oxidative stress, significant damage to blood vessels, and massive cell death. Glutathione-related enzymes (glutathione S-transferase and glutathione peroxidase) and the antioxidant protein ceruloplasmin were activated, which also indicated significant oxidative stress and severe intoxication in patients with GC.Conclusion. Depending on the stage and type of cancer, an in-depth study of lipid peroxidation and factors of the antioxidant defense system can be used to correct therapy and prevent cancer and can serve as markers of progression and prognosis in gastric cancer. 


2011 ◽  
Vol 14 (3) ◽  
pp. 219-225 ◽  
Author(s):  
P. Anand ◽  
D. Rajakumar ◽  
Mathew Jeraud ◽  
A. John William Fe ◽  
T. Balasubram

2016 ◽  
Vol 18 (2(66)) ◽  
pp. 100-112 ◽  
Author(s):  
Y.Y. Lavryshyn ◽  
I.S. Varkholyak ◽  
T.V. Martyschuk ◽  
Z.А. Guta ◽  
L.B. Ivankiv

In the review of  the literature it was generalized the data due to the classification and characterization of antioxidant protection system of animals body. This model combines a number of different by its nature substances. Each of the components of the antioxidant system operates in close relationship with its other structural elements, harmoniously, and in many cases complements and in many cases - enhances the action of each other. Glutathione system forms functional basis of antioxidant defense system, constituent elements of which has its own glutathione and enzymes, which catalyze the reaction of its reverse transformation (oxidation ↔ recovery). Glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase are attributed to these enzymes.Most researchers conventionally distributed antioxidant defense system in enzyme and non-enzyme. Catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase and other enzymes are included to enzymatic link of antioxidant defense system. Fat-soluble vitamins A, E and K, water-soluble vitamins C and PP, biogenic amines, glutathione, carotenoids, ubiquinone, sterols are included to  non-enzyme system. As the enzyme, as non-enzyme antioxidant defense system is present in the bloodstream. The activity of enzymatic antioxidant system is well regulated and depends on the age of the animals, physiological condition, the dynamics of hormone, synthesis intensity of antioxidant enzyme, pH  medium, the presence of coenzymes, inhibitors, activators, and other factors. Non-enzyme link of antioxidant system does not need so many regulators as the most chemical substance - antioxidant - enters into chemical reaction with the radical. The rate of reaction may be only changed.


2020 ◽  
Vol 8 (3) ◽  
pp. 194-197
Author(s):  
V. I. Koshevoy ◽  
S. V. Naumenko

It was found that enzymatic system activity of the antioxidant protection of the breeding boars organism with a decrease in their reproductive ability under oxidative stress was significantly decreased, which was noted by a decrease in the antioxidant capacity. Males of the experimental group had a decrease in superoxide dismutase activity by 30,2% (p ˂ 0,01). At the same time, in the erythrocytes of breeding boars, catalase activity was reduced by 33,9% (p ˂ 0,001) compared with the indicators of the control group animals, due to the high sensitivity to nitric oxide, the content of which was significantly increased during oxidative stress; interacting with nitric oxide, a suppressed form of catalase – ferricatalase-NO was formed. A decrease in the activity of these enzymes is characteristic of the oxidative stress development – which is due to the high level of peroxidation processes in the body of breeding boars. With a decrease in the activity of glutathione system components, an imbalance of the prooxidant-antioxidant system was noted. According to the research results, a decrease in the activity of the glutathione redox cycle enzymes – glutathione peroxidase and glutathione reductase was noted, which in boars with a decrease of reproductive ability were also reduced, and this also confirmed the state of oxidative stress. Thus, boars of the experimental group had a pronounced decrease in glutathione peroxidase activity by 28,4% (p ˂ 0,05), while the activity of glutathione reductase in erythrocytes was significantly reduced by 20,2% (p ˂ 0,05). The lack of physiological activity of antioxidant enzymes will have a negative impact on the fertilizing ability of sperm, because the lack of components of the enzymatic antioxidant defence system affects the activity of enzymes in sperm received from the breeding boars. A balance was observed between the components of the enzymatic antioxidant defense: the ratio of antioxidant enzymes’ activity in the male experimental group was lower than the values in the control group, however, the indices of superoxide dismutase/catalase and glutathione peroxidase/glutathione reductase had the same values, indicating that the balance in the enzymatic system of antioxidant defense was maintained. A decrease in enzyme indices in the experimental group indicated a decrease in the antioxidant potential and confirmed a certain state of oxidative stress in the breeding boars organism.


Sign in / Sign up

Export Citation Format

Share Document