scholarly journals Influence of mesenchymal stem therapy on the behavior of the process of sam-rats with brain injury

2020 ◽  
Vol 20 (1) ◽  
pp. 57-64
Author(s):  
Tatyana V. Avaliani ◽  
Olga R. Fedotova ◽  
Sergey G. Tsikunov

Current research suggests the potential use of mesenchymal stem cells (MSCs) in the treatment of brain injuries. Intravenous administration of MSCs to adult rats with brain injury leads to the restoration of behavioral and neurological status and helps to normalize maternal behavior. In this work, it was shown that a single transplantation of syngeneic mesenchymal stem cells (5 mln) into the bloodstream of female rats with motor deficiency has a corrective effect on the behavior of their offspring: it prevents the development of violations of research and locomotor behavior in the Open Field test and reduces emotional disorders.

2021 ◽  
Vol 17 (1) ◽  
pp. 11-23
Author(s):  
Y.G. Shanko ◽  
S.I. Krivenko ◽  
V.V. Goncharov ◽  
V.V. Novitskaya ◽  
A.S. Zamaro ◽  
...  

Relevance. The problem of effective prevention and treatment of traumatic brain injuries (TBI) of various etiologies has not been resolved in all countries of the world. Primary brain damage from trauma initiates secondary damage to the nervous tissue. As a result, the interaction of brain neural networks is disrupted and the control of somatic and visceral functions of the body is weakened. The article is based on our own clinical observations and comparison of results with literature data and provides a discussion of the prospects for the use of cell technologies in the prevention of fatal disorders of vital functions control in traumatic brain injuries. Objective. To evaluate the effectiveness of intranasal perineural implantation of mesenchymal stem cells (MSCs) in the complex therapy of patients with TBI. Materials and methods. The technique intranasal perineural administration of MSCs was used in complex therapy of 15 patients with severe TBI. The patients were 19÷69 years old, 13 men and two women. A cell suspension was isolated from the adipose tissue of the patient's abdominal wall and centrifuged for 10 min at 1500 rpm. The cell pellet was washed in phosphate buffered saline and DMEM. Cells were cultured in plastic culture flasks in a humidified atmosphere with 5% CO2 content. The cell mass was trypsinized according to standard technique and resuspended in physiological saline on the day of implantation. Dynamics of culture growth, pluripotency, phenotyping of MSCs were monitored. MSCs were injected under general anesthesia into the submucosa of the nasal cavity 3-4 times with an interval of 3-7 days, depending on the growth rate of MSCs, in a single dose from 12.0×106 to 35.0×106 cells. Results. The use of allogeneic and predominantly autologous MSCs of adipose tissue in the complex treatment of patients with severe TBI by intranasal perineural delivery to the area of traumatic brain injury does not cause complications and is a safe technique. 8 patients with severe TBI showed from 4 to 7 points according to the Glasgow Outcome Scale Extended, with an average of 5.4±1.1 points after 6 months. The main result is that complex therapy, including intranasal implantation of MSCs in acute and subacute periods of severe TBI, contributes to the survival of patients and restoration of neurological – including cognitive – functions control. Conclusions. The effectiveness of intranasal perineural implantation of MSCs in the complex therapy of patients with TBI has been demonstrated. The mechanisms of the beneficial effects of perineural implantation of MSCs in patients with TBI require further research.


2018 ◽  
Vol 35 (1) ◽  
pp. 369-374
Author(s):  
Omayma A.R. AbouZaid ◽  
Laila A Rashed ◽  
S. M. El-Sonbaty ◽  
Aboel-Ftouh A. I

2021 ◽  
Vol 11 (Suppl. 1) ◽  
pp. 47-55
Author(s):  
Zozan Erdoğmuş ◽  
Belgin Gülsün

Aim: Deformities of the jaw and face are often caused by infection, inflammation, and cystic and neoplastic pathological conditions. Defects with various aetiologies should be repaired promptly using the most appropriate approach to reconstruct the anatomical form. To treat defects, bone grafts with various combinations have been used. In particular, combinations including cellular products to enhance osteogenic properties have been implemented. In this study, we aimed to investigate the effects of different materials and cells on bone defects by using mesenchymal stem cells (MSCs), which are thought to have a positive effect on healing, demineralized bone graft (DMB) and platelet-rich plasma (PRP). Methodology: We used 55 female rats weighing between 200-250 g, four of which were used to obtain platelet-rich plasma. The remaining animals were divided into five groups. Group I (n = 6) was the operative control group, Group II (n = 24) was given DMB, Group III (n = 24) was given DMB+PRP, Group IV (n = 24) was given MSC+DBG and Group V (n = 24) was given DMB+PRP+MSC applied to rat tibial defects (10 mm x 3 mm x 2 mm). Results: Statistically significant differences were observed in bone osteoblastic activity in tibia defects among the groups (p<0.05). Conclusion: Bone regeneration was significantly improved in groups where MSCs were used in combination with DMB and PRP.   How to cite this article: Erdoğmuş Z, Gülsün B. The effect of mesenchymal stem cells, demıneralızed bone graft and platelet-rıch plasma on osteogenesıs ın rat tıbıa defects. Int Dent Res 2021;11(Suppl.1):47-55. https://doi.org/10.5577/intdentres.2021.vol11.suppl1.8   Linguistic Revision: The English in this manuscript has been checked by at least two professional editors, both native speakers of English.


2017 ◽  
Vol 69 (6) ◽  
pp. 1573-1580
Author(s):  
K.P. Oliveira ◽  
A.M.S. Reis ◽  
A.P. Silva ◽  
C.L.R. Silva ◽  
A.M. Goes ◽  
...  

ABSTRACT The objective was to evaluate the in vitro effect of prolactin in osteogenic potential of adipose tissue-derived mesenchymal stem cells (ADSCs) in female rats. ADSCs were cultured in osteogenic medium with and without the addition of prolactin and distributed into three groups: 1) ADSCs (control), 2) ADSCs with addition of 100ng/mL of prolactin and 3) ADSCs with addition of 300ng/mL of prolactin. At 21 days of differentiation, the tests of MTT conversion into formazan crystals, percentage of mineralized nodules and cells per field and quantification of genic transcript for alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I by real-time RT-PCR were made. The addition of prolactin reduced the conversion of MTT in group 3 and increased the percentage of cells per field in the groups 2 and 3, however without significantly increasing the percentage of mineralized nodules and the expression of alkaline phosphatase, osteopontin, osteocalcin, bone sialoprotein, BMP-2 and collagen I. In conclusion, the addition of prolactin in concentrations of 100ng/mL and 300ng/mL does not change the osteogenic differentiation to the ADSCs of female rats despite increase in the cellularity of the culture.


2020 ◽  
Vol 7 (4) ◽  
pp. 125
Author(s):  
Yuliya Safarova (Yantsen) ◽  
Farkhad Olzhayev ◽  
Bauyrzhan Umbayev ◽  
Andrey Tsoy ◽  
Gonzalo Hortelano ◽  
...  

Osteoporosis is a progressive skeletal disease characterized by reduced bone density leading to bone fragility and an elevated risk of bone fractures. In osteoporotic conditions, decrease in bone density happens due to the augmented osteoclastic activity and the reduced number of osteoblast progenitor cells (mesenchymal stem cells, MSCs). We investigated a new method of cell therapy with membrane-engineered MSCs to restore the osteoblast progenitor pool and to inhibit osteoclastic activity in the fractured osteoporotic bones. The primary active sites of the polymer are the N-hydroxysuccinimide and bisphosphonate groups that allow the polymer to covalently bind to the MSCs’ plasma membrane, target hydroxyapatite molecules on the bone surface and inhibit osteolysis. The therapeutic utility of the membrane-engineered MSCs was investigated in female rats with induced estrogen-dependent osteoporosis and ulnar fractures. The analysis of the bone density dynamics showed a 27.4% and 21.5% increase in bone density at 4 and 24 weeks after the osteotomy of the ulna in animals that received four transplantations of polymer-modified MSCs. The results of the intravital observations were confirmed by the post-mortem analysis of histological slices of the fracture zones. Therefore, this combined approach that involves polymer and cell transplantation shows promise and warrants further bio-safety and clinical exploration.


Sign in / Sign up

Export Citation Format

Share Document