scholarly journals Inhibitory interactions in the system of functionally connected muscles of the shin in patients with the cerebral palsy

2021 ◽  
Vol XXX (3-4) ◽  
pp. 39-43
Author(s):  
I. N. Pleschinsky ◽  
G. G. Guselnikova ◽  
R. H. Bikmullina ◽  
Е. V. Novikova

In 10 able-bodied individuals and 8 patients with the cerebral palsy reciprocal and non-reciprocal inhibitions of soleus motoneurones were investigated by means of the H-reflex conditioned by electrical stimulation of the tibialis and gastrocnemius medialis nerves, respectively. In normal individuals short- and long-latency periods of both reciprocal and non-reciprocal inhibitions were found. The cerebral palsy patients showed the increased inhibitory influence with more enhanced short-latency components of inhibition. A possible role of inhibitory systems in limitation of patologically activated antigravitant soleus motoneurones was discussed.

1980 ◽  
Vol 239 (1) ◽  
pp. R137-R142 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

To investigate the role of the paraventricular (PAH) and supraoptic (SON) nuclei in regulation of the cardiovascular system experiments were done in 26 cats anesthetized with alpha-chloralose, paralyzed, and artificially ventilated. Electrical stimulation of histologically verified sites in the region of the PAH and SON elicited increases in arterial pressure in bilaterally vagotomized animals and increases in heart rate both in spinal (C2) animals and in animals bilaterally vagotomized, In addition, stimulation of either the PAH or SON inhibited the reflex vagal bradycardia elicited by stimulation of the carotid sinus nerve (CSN) and bilateral lesions of these areas increased the magnitude of the response. On the other hand, stimulation and lesions of these hypothalamic regions did not alter the magnitude of the cardiovascular responses to stimulation of the aortic depressor nerve. These results demonstrate that stimulation of the PAH and SON elicit cardiovascular responses due to reciprocal changes in activity of the parasympathetic and sympathetic nervous systems and that these structures maintain a tonic inhibitory influence on the heart rate component of the CSN reflex.


1989 ◽  
Vol 62 (3) ◽  
pp. 711-722 ◽  
Author(s):  
T. Allison ◽  
G. McCarthy ◽  
C. C. Wood ◽  
P. D. Williamson ◽  
D. D. Spencer

1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N100, recorded above and below the Sylvian sulcus (SS) respectively. This distribution suggests a tangential generator located in the upper wall of the SS in the second somatosensory area (SII). In addition, N125 and P200, recorded near and on either side of the SS, suggest a radial generator in a portion of SII located in surface cortex above the SS. 7. In comparison with the short-latency SEPs described in the preceding paper, the long-latency potentials were more variable and were more affected by intraoperative conditions.


2004 ◽  
Vol 287 (4) ◽  
pp. H1721-H1729 ◽  
Author(s):  
Koji Miyazaki ◽  
Satoshi Komatsu ◽  
Mitsuo Ikebe ◽  
Richard A. Fenton ◽  
James G. Dobson

Adenosine-induced antiadrenergic effects in the heart are mediated by adenosine A1 receptors (A1R). The role of PKCε in the antiadrenergic action of adenosine was explored with adult rat ventricular myocytes in which PKCε was overexpressed. Myocytes were transfected with a pEGFP-N1 vector in the presence or absence of a PKCε construct and compared with normal myocytes. The extent of myocyte shortening elicited by electrical stimulation of quiescent normal and transfected myocytes was recorded with video imaging. PKCε was found localized primarily in transverse tubules. The A1R agonist chlorocyclopentyladenosine (CCPA) at 1 μM rendered an enhanced localization of PKCε in the t-tubular system. The β-adrenergic agonist isoproterenol (Iso; 0.4 μM) elicited a 29–36% increase in myocyte shortening in all three groups. Although CCPA significantly reduced the Iso-produced increase in shortening in all three groups, the reduction caused by CCPA was greatest with PKCε overexpression. The CCPA reduction of the Iso-elicited shortening was eliminated in the presence of a PKCε inhibitory peptide. These results suggest that the translocation of PKCε to the t-tubular system plays an important role in A1R-mediated antiadrenergic actions in the heart.


2018 ◽  
Vol 361 ◽  
pp. 23-35 ◽  
Author(s):  
Christopher J. Pastras ◽  
Ian S. Curthoys ◽  
Ljiljana Sokolic ◽  
Daniel J. Brown

1978 ◽  
Vol 235 (3) ◽  
pp. H289-H294 ◽  
Author(s):  
M. P. Kaye ◽  
G. M. Tyce

To study the possible role of uptake of [3H]norepinephrine ([3H]NE) as an indicator of sympathetic reinnervation of the surgically denervated canine heart, uptake was determined from multiple areas of hearts at various stages of reinnervation (1--6 mo), and these data were correlated with myocardial catecholamine content and functional response of the heart to electrical stimulation of the sympathetic nerves. Our experiments confirm that NE content correlates poorly with the degree of reinnervation of the previously denervated canine heart. There is, however, a progressive increase of [3H]NE uptake from 1 mo to 6 mo, at which time uptake has returned to approximately 57% of control values in the left atrium. The development of the storage mechanism lags far behind the specific-membrane mechanism for uptake in the reinnervating surgically denervated canine heart.


1995 ◽  
Vol 73 (2) ◽  
pp. 506-514 ◽  
Author(s):  
E. R. Reiter ◽  
M. C. Liberman

1. The present study attempts to resolve discrepancies in the reported role of olivocochlear (OC) efferent activation in protecting the inner ear from acoustic overstimulation: in previous studies, activating the OC system in guinea pigs reduced the threshold shift caused by 1 min monaural exposure to a 10-kHz tone; whereas unilateral OC activation in cats had no effect on threshold shifts following binaural exposure to a 10 min 6-kHz tone. 2. In this study, anesthetized and curarized guinea pigs were exposed either monaurally or binaurally to tones of different duration (1-5 min), frequency (6 to 10 kHz) and intensity (105-118 dB SPL). For each exposure condition, threshold shifts were compared among ears with different levels of OC activation: in some cases, the OC bundle (OCB) was electrically stimulated during (and/or before) the acoustic overexposure; in others, the OCB was cut before the exposure; in control cases, the OCB was neither cut nor electrically stimulated. 3. Electrical stimulation of the OCB delivered simultaneously with acoustic overstimulation produced significant reductions in threshold shift only for acoustic exposures at higher frequencies (8 and 10 kHz) and shorter durations (1 and 2 min). The protective effects on 1-min exposures could be extinguished by prior stimulation of the OCB, i.e., if the OC stimulation was turned on 4 min before the acoustic overexposure.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 70 (6) ◽  
pp. 2241-2250 ◽  
Author(s):  
M. K. Floeter ◽  
A. Lev-Tov

1. The excitation of lumbar motoneurons by reticulospinal axons traveling in the medial longitudinal fasciculus (MLF) was investigated in the newborn rat using intracellular recordings from lumbar motoneurons in an in vitro preparation of the brain stem and spinal cord. The tracer DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine) was introduced into the MLF of 6-day-old littermate rats that had been fixed with paraformaldehyde to evaluate the anatomic extent of this developing pathway. 2. Fibers labeled from the MLF by DiI were present in the cervical ventral and lateral white matter and a smaller number of labeled fibers extended to the lumbar enlargement. Patches of sparse terminal labeling were seen in the lumbar ventral gray. 3. In the in vitro preparation of the brain stem and spinal cord, MLF stimulation excited motoneurons through long-latency pathways in most motoneurons and through both short-(< 40 ms) and long-latency connections in 16 of 40 motoneurons studied. Short- and longer-latency components of the excitatory response were evaluated using mephenesin to reduce activity in polysynaptic pathways. 4. Paired-pulse stimulation of the MLF revealed a modest temporal facilitation of the short-latency excitatory postsynaptic potential (EPSP) at short interstimulus intervals (20–200 ms). Trains of stimulation at longer interstimulus intervals (1–30 s) resulted in a depression of EPSP amplitude. The time course of the synaptic depression was compared with that found in EPSPs resulting from paired-pulse stimulation of the dorsal root and found to be comparable. 5. The short-latency MLF EPSP was reversibly blocked by 6-cyano-7-nitroquinoxaline (CNQX), an antagonist of non-N-methyl-D-aspartate glutamate receptors, with a small CNQX-resistant component. Longer-latency components of the MLF EPSP were also blocked by CNQX, and some late components of the PSP were sensitive to strychnine. MLF activation of multiple polysynaptic pathways in the spinal cord is discussed.


1987 ◽  
Vol 96 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Kenneth E. Mooney ◽  
Akira Inokuchi ◽  
James B. Snow ◽  
Charles P. Kimmelman

The projection between the ventral tegmental area (VTA) and the olfactory tubercle (OT) was examined electrophysiologically in the rat. Stimulation of the olfactory bulb (OB) determined if the OT neurons were olfactory-related. Ipsilateral VTA stimulation produced a change in neuronal activity in 77% of the neurons tested, with 41% being inhibited, 24% excited, and 12% had mixed response. Contralateral VTA stimulation produced changes in only 38%. Intravenous administration of haloperidol was used in examination of the role of dopamine in this neural connection. The results suggest that the VTA-induced inhibitory response on OT neurons is mediated by dopamine, whereas excitatory responses are not. The VTA inhibitory influence projects primarily to olfactory-related neurons, since 60% of olfactory-related OT neurons were inhibited—as compared to 34% of non-olfactory-related neurons. This study documents electrophysiologically the VTA-OT connection and suggests that the dopaminergic input may modulate olfactory information projected to the OT from the OB. It also supports the concept that the OT acts as an integration center in central olfactory processing.


Sign in / Sign up

Export Citation Format

Share Document