Modulation of electrical activity and ionic currents of isolated neurons by orexin A
The changes in intracellular potential of resting (PR) and potential of action (PA) of the identified neurons of pedal and visceral ganglia of the CNS mollusk Planorbarius corneus registered by means of intracellular electrodes, and ionic currents of isolated neurons under fixed potential after administration of orexin A in concentrations 1, 10, 100 and 1000 µg/ml were studied by the method of fixation of membrane potential in isolated neurons of the Lymnaea stagnalis mollusk. Dibazol in concentrations of 1 and 10 µM effected slightly on the ionic currents. High concentrations of dibazol (100 and 1000 µM) inhibited all currents in dose dependent manner with maximal effect on potassium currents amplitude. ЕС50 were 7.4 мМ for INa, 4.0 мМ for ICa, 83.9 µM for IKs,1 (one group of neurons) and 2.9 мМ for IKs,2 (the another group of neurons). The voltage-amper membrane characteristics shift was not registered, but the kinetics of currents development was changed. Dibazol was more effective in inhibition of ionic currents compared to its structural analogs.