High precision strain gauge measurements in areas of high stress concentrations of orthotropic plated bridge decks

2007 ◽  
Vol 49 (7) ◽  
pp. 384-389 ◽  
Author(s):  
H De Backer ◽  
A Outtier ◽  
P Van Bogaert
1987 ◽  
Vol 109 (3) ◽  
pp. 444-450 ◽  
Author(s):  
L. Houpert ◽  
E. Ioannides ◽  
J. C. Kuypers ◽  
J. Tripp

A recently proposed fatigue life model for rolling bearings has been applied to the study of lifetime reduction under conditions conducive to microspalling. The presence of a spike in the EHD pressure distribution produces large shear stresses localized very close to the surface which may account for early failure. This paper describes a parametric study of the effect of such spikes. Accurate stress fields in the volume are calculated for simulated pressure spikes of different height, width and position relative to a Hertzian pressure distribution, as well as for different lubricant traction coefficients and film thicknesses. Despite the high stress concentrations in the surface layers, reductions in life predicted by the model are modest. Typically, the pressure spike may halve the life, with the implication that subsurface fatigue still dominates. In corroboration of this prediction, preliminary experimental work designed to reproduce microspalling conditions shows that microindents due to overrolling particles are a much more common form of surface damage than microspalling.


Author(s):  
Tibor Kiss ◽  
Wing-Fai Ng ◽  
Larry D. Mitchell

Abstract A high-speed rotor wheel for a wind-tunnel experiment has been designed. The rotor wheel was similar to one in an axial turbine, except that slender bars replaced the blades. The main parameters of the rotor wheel were an outer diameter of 10“, a maximum rotational speed of 24,000 RPM and a maximum transferred torque of 64 lb-ft. Due to the working environment, the rotor had to be designed with high safety margins. The coupling of the rotor wheel with the shaft was found to be the most critical issue, because of the high stress concentration factors associated with the conventional coupling methods. The efforts to reduce the stress concentrations resulted in an advanced coupling design which is the main subject of the present paper. This new design was a special key coupling in which six dowel pins were used for keys. The key slots, now pin-grooves, were placed in bosses on the inner surface of the hub. The hub of the rotor wheel was relatively long, which allowed for applying the coupling near the end faces of the hub, that is, away from the highly loaded centerplane. The long hub resulted in low radial expansion in the coupling region. Therefore, solid contact between the shaft and the hub could be maintained for all working conditions. To develop and verify the design ideas, stress and deformation analyses were carried out using quasi-two-dimensional finite element models. An overall safety factor of 3.7 resulted. The rotor has been built and successfully accelerated over the design speed in a spin test pit.


Physica B+C ◽  
1976 ◽  
Vol 81 (1) ◽  
pp. 24-34 ◽  
Author(s):  
R.D. Greenough ◽  
C. Underhill ◽  
P. Underhill

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 210
Author(s):  
Marco M. Schäck

For high-precision measurements of strain gauge-based transducers, 225 Hz carrier frequency measuring amplifiers are primarily used. The benefits of this carrier frequency method were discussed in previous publications. This publication shows the measurement uncertainty that can be achieved by calibrating an amplifier based on this method. Possibilities for improving the measurement uncertainty and the physical limit from the user's point of view are shown.


Author(s):  
Wei Ma ◽  
Rongqi Wang ◽  
Xiaoqin Zhou ◽  
Guangwei Meng

Flexure hinges, which serve as the crucial joints in a large number of compliant mechanisms, have been widely applied in a variety of significant fields where there is high demand for the micro/nano motions with high resolution and high precision. Currently, an increasing number of notched flexure hinges with different structures and performances have been rapidly developed, but the existing performance comparisons on different notched flexure hinges were only conducted on seldom typical structures and are far from the comprehensiveness and fairness due to the different comparative conditions and discrepant evaluating indexes. Therefore, the finite beam-based matrix modeling method and nondimension precision factors will be employed in comprehensive comparing and ranking of 13 types of frequently-used notched flexure hinges in terms of their main compliances, motion accuracies, and stress concentrations, further providing useful practical guidelines to develop the compliant mechanisms with excellent overall performances.


2006 ◽  
Vol 39 ◽  
pp. S428 ◽  
Author(s):  
L. Muraru ◽  
S.V.N. Jaecques ◽  
J. Demol ◽  
I. Naert ◽  
J. Vander Sloten

1967 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
M J Iremonger ◽  
W G Wood

An investigation has been made into the suitability of the finite-element method for studying the stresses in composite materials and the case of a single broken fibre in a matrix has been examined. It has been found that high stress concentrations occur in the region of the fibre break which increase with decreasing end gap and would cause matrix yielding or fracture at comparatively low overall stresses. When the end gap is not void but filled with matrix much lower stress concentrations occur which, below a certain value of end gap, actually decrease as the gap is made smaller.


Sign in / Sign up

Export Citation Format

Share Document