Late Quaternary Slip‐Rate Variations along the Warm Springs Valley Fault System, Northern Walker Lane, California–Nevada Border

2013 ◽  
Vol 103 (1) ◽  
pp. 542-558 ◽  
Author(s):  
Ryan Gold ◽  
Craig dePolo ◽  
Richard Briggs ◽  
Anthony Crone ◽  
John Gosse
1996 ◽  
Vol 39 (3) ◽  
Author(s):  
R. Caputo

The Nea Anchialos Fault System has been studied integrating geological, morphological, structural, archaeological and seismic data. This fault system forms the northern boundary of the Almyros Basin which is one of the Neogene-Quaternary tectonic basins of Thessaly. Specific structural and geomorphological mapping were carried out and fault-slip data analysis allowed the Late Quaternary palaeo-stress field to be estimated. The resulting N-S trending purely extensional regime is consistent with the direction of the T-axes computed from the focal mechanisms of the summer 1980, Volos seismic sequence and the April 30, 1985 Almyros earthquake. A minor set of structural data indicates a WNW-ESE extension which has been interpreted as due to a local and second order stress field occurring during the N-S regional extension. Furthermore, new archaeological data, discovered by the author, have improved morphology and tectonics of the area also allowing a tentative estimate of the historic (III-IV century AD. to Present) fault slip rate. Several topographic profiles across the major E- W topographic escarpment as well as along the streams, have emphasised scarps and knick-points, further supporting the occurrence of very recent morphogenic activity. In the last section, the structural, morphological and archaeological data are compared with the already existing seismological data and their integrated analysis indicates that the Nea Anchialos Fault System has been active since Lower(?)-Middle Pleistocene.


2021 ◽  
Author(s):  
Paolo Boncio ◽  
Eugenio Auciello ◽  
Vincenzo Amato ◽  
Pietro Aucelli ◽  
Paola Petrosino ◽  
...  

Abstract. We studied in detail the Gioia Sannitica active normal fault (GF) along the Southern Matese Fault system in the southern Apennines of Italy. The current activity of the fault system and its potential to produce strong earthquakes have been underestimated so far, and are now defined. Precise mapping of the GF fault trace on a 1 : 20,000 geological map and several point data on geometry, kinematics and throw rate are made available in electronic format. The GF, and in general the entire fault system along the southern Matese mountain front, is made of slowly-slipping faults, with a long active history revealed by the large geologic offsets, mature geomorphology, and complex fault pattern and kinematics. Present activity has resulted in Late Quaternary fault scarps resurrecting the foot of the mountain front, and Holocene surface faulting. The slip rate varies along-strike, with maximum Late Pleistocene – Holocene throw rate of ~0.5 mm/yr. Activation of the 11.5 km-long GF can produce up to M 6.1 earthquakes. If activated together with the 18 km-long Ailano-Piedimonte Matese fault (APMF), the seismogenic potential would be M 6.8. The slip history of the two faults is compatible with a contemporaneous rupture. The observed Holocene displacements on the GF and APMF are compatible with activations during some poorly known historical earthquakes, such as the 1293 (M 5.8), 1349 (M 6.8; southern prolongation of the rupture on the Aquae Iuliae fault?) and CE 346 earthquakes. A fault rupture during the 847 poorly-constrained historical earthquake is also compatible with the dated displacements.


2020 ◽  
Vol 133 (1-2) ◽  
pp. 307-324
Author(s):  
Zachery M. Lifton ◽  
Jeffrey Lee ◽  
Kurt L. Frankel ◽  
Andrew V. Newman ◽  
Jeffrey M. Schroeder

Abstract The White Mountains fault zone in eastern California is a major fault system that accommodates right-lateral shear across the southern Walker Lane. We combined field geomorphic mapping and interpretation of high-resolution airborne light detection and ranging (LiDAR) digital elevation models with 10Be cosmogenic nuclide exposure ages to calculate new late Pleistocene and Holocene right-lateral slip rates on the White Mountains fault zone. Alluvial fans were found to have ages of 46.6 + 11.0/–10.0 ka and 7.3 + 4.2/–4.5 ka, with right-lateral displacements of 65 ± 13 m and 14 ± 5 m, respectively, yielding a minimum average slip rate of 1.4 ± 0.3 mm/yr. These new slip rates help to resolve the kinematics of fault slip across this part of the complex Pacific–North American plate boundary. Our results suggest that late Pleistocene slip rates on the White Mountains fault zone were significantly faster than previously reported. These results also help to reconcile a portion of the observed discrepancy between modern geodetic strain rates and known late Pleistocene slip rates in the southern Walker Lane. The total middle to late Pleistocene slip rate from the southern Walker Lane near 37.5°N was 7.9 + 1.3/–0.6 mm/yr, ∼75% of the observed modern geodetic rate.


2021 ◽  
Author(s):  
◽  
Timothy David Bartholomew

<p>The coastal Awatere, Vernon, and Cloudy faults are bent and mutually intersecting, forming a complexly deforming dextral-oblique fault network. To try to explain the kinematic, paleoseismic and evolutionary complexities of this network, I present the results of an investigation into the rates, timing, and direction of slip on the faults within the network; which bifurcate eastwards from the central Awatere fault at the northeast end of the Marlborough Fault System. Displacements of dated and nondated late Quaternary features by the three faults were measured both onshore and offshore, constraining the kinematics of the fault network. The Vernon fault oddly maintains a dextral-reverse structure although it varies over 90° in strike and the Cloudy and coastal Awatere faults change from nearly pure strike slip to having a normal component eastwards. These data indicate that the fault-bounded blocks between the coastal Awatere, Vernon and Cloudy faults are rotating anticlockwise about a vertical axis relative to the block to the north of the fault system. Slip-rate data also indicate that of the 6 ± 1 mm/yr of slip on the central Awatere Fault, 1.1 ± 0.6 mm/yr has been partitioned ENE onto the coastal Awatere Fault and <4.9 mm/yr has been partitioned NNE onto the Vernon Fault. A slip-rate shortage in the splays of the Vernon Fault in the Vernon Hills is caused by a combination of unsighted faults and rotation of smaller splay-bounded blocks within the Vernon Hills. Paleoseismic records on the Vernon Fault were analysed onshore in a trench and offshore on seismic lines, with the records in good agreement. 3-5 earthquakes are recognised at different sites, with the last earthquake occurring 3.3 ka and a mean recurrence interval of 3-4 ka on the Vernon Fault. When combined with the paleseismic records from the Awatere and Cloudy faults I find that separate faults ruptured at similar times, suggesting a connectivity of the faults, as separate faults could mutually rupture during one earthquake or an earthquake could subsequently trigger an earthquake on a nearby fault. Finally I present the finite slip of geologic units and use these data as well as the late Quaternary slip data to describe the evolution of the fault network. I propose that the fault network at the NE end of the Awatere fault has stepped northwards into several splays, caused by clockwise rotation of the NE tips of the Marlborough faults.</p>


Author(s):  
Daphnee Tuzlak ◽  
Joel Pederson ◽  
Aaron Bufe ◽  
Tammy Rittenour

Understanding the dynamics of the greater Yellowstone region requires constraints on deformation spanning million year to decadal timescales, but intermediate-scale (Quaternary) records of erosion and deformation are lacking. The Upper Snake River drainage crosses from the uplifting region that encompasses the Yellowstone Plateau into the subsiding Snake River Plain and provides an opportunity to investigate a transect across the trailing margin of the hotspot. Here, we present a new chronostratigraphy of fluvial terraces along the lower Hoback and Upper Snake Rivers and measure drainage characteristics through Alpine Canyon interpreted in the context of bedrock erodibility. We attempt to evaluate whether incision is driven by uplift of the Yellowstone system, subsidence of the Snake River Plain, or individual faults along the river’s path. The Upper Snake River in our study area is incising at roughly 0.3 m/k.y. (300 m/m.y.), which is similar to estimates from drainages at the leading eastern margin of the Yellowstone system. The pattern of terrace incision, however, is not consistent with widely hypothesized headwater uplift from the hotspot but instead is consistent with downstream baselevel fall as well as localized deformation along normal faults. Both the Astoria and Hoback faults are documented as active in the late Quaternary, and an offset terrace indicates a slip rate of 0.25−0.5 m/k.y. (250−500 m/m.y.) for the Hoback fault. Although tributary channel steepness corresponds with bedrock strength, patterns of χ across divides support baselevel fall to the west. Subsidence of the Snake River Plain may be a source of this baselevel fall, but we suggest that the closer Grand Valley fault system could be more active than previously thought.


Geosphere ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 1445-1463 ◽  
Author(s):  
Peter J. Haeussler ◽  
Ari Matmon ◽  
David P. Schwartz ◽  
Gordon G. Seitz

2021 ◽  
Author(s):  
◽  
Timothy David Bartholomew

<p>The coastal Awatere, Vernon, and Cloudy faults are bent and mutually intersecting, forming a complexly deforming dextral-oblique fault network. To try to explain the kinematic, paleoseismic and evolutionary complexities of this network, I present the results of an investigation into the rates, timing, and direction of slip on the faults within the network; which bifurcate eastwards from the central Awatere fault at the northeast end of the Marlborough Fault System. Displacements of dated and nondated late Quaternary features by the three faults were measured both onshore and offshore, constraining the kinematics of the fault network. The Vernon fault oddly maintains a dextral-reverse structure although it varies over 90° in strike and the Cloudy and coastal Awatere faults change from nearly pure strike slip to having a normal component eastwards. These data indicate that the fault-bounded blocks between the coastal Awatere, Vernon and Cloudy faults are rotating anticlockwise about a vertical axis relative to the block to the north of the fault system. Slip-rate data also indicate that of the 6 ± 1 mm/yr of slip on the central Awatere Fault, 1.1 ± 0.6 mm/yr has been partitioned ENE onto the coastal Awatere Fault and <4.9 mm/yr has been partitioned NNE onto the Vernon Fault. A slip-rate shortage in the splays of the Vernon Fault in the Vernon Hills is caused by a combination of unsighted faults and rotation of smaller splay-bounded blocks within the Vernon Hills. Paleoseismic records on the Vernon Fault were analysed onshore in a trench and offshore on seismic lines, with the records in good agreement. 3-5 earthquakes are recognised at different sites, with the last earthquake occurring 3.3 ka and a mean recurrence interval of 3-4 ka on the Vernon Fault. When combined with the paleseismic records from the Awatere and Cloudy faults I find that separate faults ruptured at similar times, suggesting a connectivity of the faults, as separate faults could mutually rupture during one earthquake or an earthquake could subsequently trigger an earthquake on a nearby fault. Finally I present the finite slip of geologic units and use these data as well as the late Quaternary slip data to describe the evolution of the fault network. I propose that the fault network at the NE end of the Awatere fault has stepped northwards into several splays, caused by clockwise rotation of the NE tips of the Marlborough faults.</p>


Sign in / Sign up

Export Citation Format

Share Document