scholarly journals Neotectonics, Kinematics, and Evolution of the Vernon, Awatere, and Cloudy Faults of the Marlborough Fault System, New Zealand

2021 ◽  
Author(s):  
◽  
Timothy David Bartholomew

<p>The coastal Awatere, Vernon, and Cloudy faults are bent and mutually intersecting, forming a complexly deforming dextral-oblique fault network. To try to explain the kinematic, paleoseismic and evolutionary complexities of this network, I present the results of an investigation into the rates, timing, and direction of slip on the faults within the network; which bifurcate eastwards from the central Awatere fault at the northeast end of the Marlborough Fault System. Displacements of dated and nondated late Quaternary features by the three faults were measured both onshore and offshore, constraining the kinematics of the fault network. The Vernon fault oddly maintains a dextral-reverse structure although it varies over 90° in strike and the Cloudy and coastal Awatere faults change from nearly pure strike slip to having a normal component eastwards. These data indicate that the fault-bounded blocks between the coastal Awatere, Vernon and Cloudy faults are rotating anticlockwise about a vertical axis relative to the block to the north of the fault system. Slip-rate data also indicate that of the 6 ± 1 mm/yr of slip on the central Awatere Fault, 1.1 ± 0.6 mm/yr has been partitioned ENE onto the coastal Awatere Fault and <4.9 mm/yr has been partitioned NNE onto the Vernon Fault. A slip-rate shortage in the splays of the Vernon Fault in the Vernon Hills is caused by a combination of unsighted faults and rotation of smaller splay-bounded blocks within the Vernon Hills. Paleoseismic records on the Vernon Fault were analysed onshore in a trench and offshore on seismic lines, with the records in good agreement. 3-5 earthquakes are recognised at different sites, with the last earthquake occurring 3.3 ka and a mean recurrence interval of 3-4 ka on the Vernon Fault. When combined with the paleseismic records from the Awatere and Cloudy faults I find that separate faults ruptured at similar times, suggesting a connectivity of the faults, as separate faults could mutually rupture during one earthquake or an earthquake could subsequently trigger an earthquake on a nearby fault. Finally I present the finite slip of geologic units and use these data as well as the late Quaternary slip data to describe the evolution of the fault network. I propose that the fault network at the NE end of the Awatere fault has stepped northwards into several splays, caused by clockwise rotation of the NE tips of the Marlborough faults.</p>

2021 ◽  
Author(s):  
◽  
Timothy David Bartholomew

<p>The coastal Awatere, Vernon, and Cloudy faults are bent and mutually intersecting, forming a complexly deforming dextral-oblique fault network. To try to explain the kinematic, paleoseismic and evolutionary complexities of this network, I present the results of an investigation into the rates, timing, and direction of slip on the faults within the network; which bifurcate eastwards from the central Awatere fault at the northeast end of the Marlborough Fault System. Displacements of dated and nondated late Quaternary features by the three faults were measured both onshore and offshore, constraining the kinematics of the fault network. The Vernon fault oddly maintains a dextral-reverse structure although it varies over 90° in strike and the Cloudy and coastal Awatere faults change from nearly pure strike slip to having a normal component eastwards. These data indicate that the fault-bounded blocks between the coastal Awatere, Vernon and Cloudy faults are rotating anticlockwise about a vertical axis relative to the block to the north of the fault system. Slip-rate data also indicate that of the 6 ± 1 mm/yr of slip on the central Awatere Fault, 1.1 ± 0.6 mm/yr has been partitioned ENE onto the coastal Awatere Fault and <4.9 mm/yr has been partitioned NNE onto the Vernon Fault. A slip-rate shortage in the splays of the Vernon Fault in the Vernon Hills is caused by a combination of unsighted faults and rotation of smaller splay-bounded blocks within the Vernon Hills. Paleoseismic records on the Vernon Fault were analysed onshore in a trench and offshore on seismic lines, with the records in good agreement. 3-5 earthquakes are recognised at different sites, with the last earthquake occurring 3.3 ka and a mean recurrence interval of 3-4 ka on the Vernon Fault. When combined with the paleseismic records from the Awatere and Cloudy faults I find that separate faults ruptured at similar times, suggesting a connectivity of the faults, as separate faults could mutually rupture during one earthquake or an earthquake could subsequently trigger an earthquake on a nearby fault. Finally I present the finite slip of geologic units and use these data as well as the late Quaternary slip data to describe the evolution of the fault network. I propose that the fault network at the NE end of the Awatere fault has stepped northwards into several splays, caused by clockwise rotation of the NE tips of the Marlborough faults.</p>


Author(s):  
Irwan Meilano ◽  
Rino Salman ◽  
Suchi Rahmadani ◽  
Qibin Shi ◽  
Susilo Susilo ◽  
...  

Abstract The 26 September 2019 Mw 6.5 Ambon earthquake has been the largest instrumentally recorded event to occur in Ambon, the capital city of Maluku Islands, eastern Indonesia, and ruptured a previously unmapped active fault. In this study, we use seismic and geodetic data to investigate the source characteristics of the event. Our results show that the rupture process was complex in both the rupture initiation and slip directions. In addition, the rupture was mostly strike-slip motion with normal component and pure reverse slip in the north of the inverted fault. Our analysis of campaign and continuous Global Positioning System (GPS) velocity fields estimates that the fault has a 4.9 [4.0, 5.5] mm/yr slip rate with an earthquake recurrence interval of 115 [102, 141] yr. In addition, a comparison of the horizontal strain-rate tensor derived from GPS velocity fields with historical earthquake data shows that Ambon Island and the nearby regions have a high strain accumulation rate correlated with the distribution of Mw≥6 earthquakes, indicating that the regions are seismically active and possibly will experience more Ambon-type earthquakes in the future.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3386
Author(s):  
Giuseppe Corrado ◽  
Sabrina Amodio ◽  
Pietro P. C. Aucelli ◽  
Gerardo Pappone ◽  
Marcello Schiattarella

The Volturno alluvial-coastal plain is a relevant feature of the Tyrrhenian side of southern Italy. Its plan-view squared shape is due to Pliocene-Quaternary block-faulting of the western flank of the south-Apennines chain. On the basis of the stratigraphic analysis of almost 700 borehole logs and new geomorphological survey, an accurate paleoenvironmental reconstruction before and after the Campania Ignimbrite (CI; about 40 ky) eruption is here presented. Tectonics and eustatic forcing have been both taken into account to completely picture the evolution of the coastal plain during Late Quaternary times. The upper Pleistocene-Holocene infill of the Volturno plain has been here re-organized in a new stratigraphic framework, which includes seven depositional units. Structural analysis showed that two sets of faults displaced the CI, so accounting for recent tectonic activity. Yet Late Quaternary tectonics is rather mild, as evidenced by the decametric vertical separations operated by those faults. The average slip rate, which would represent the tectonic subsidence rate of the plain, is about 0.5 mm/year. A grid of cross sections shows the stratigraphic architecture which resulted from interactions among eustatic changes, tectonics and sedimentary input variations. On the basis of boreholes analysis, the trend of the CI roof was reconstructed. An asymmetrical shape of its ancient morphology—with a steeper slope toward the north-west border—and the lack of coincidence between the present course of the Volturno River and the main buried bedrock incision, are significant achievements of this study. Finally, the morpho-evolutionary path of the Volturno plain has been discussed.


2014 ◽  
Vol 51 (10) ◽  
pp. 927-942 ◽  
Author(s):  
Nathan Hayward ◽  
Louise Corriveau

The Great Bear magmatic zone, located in Wopmay orogen, is a 1.875–1.84 Ga belt, 450 km long by 100 km wide of volcanic and allied plutonic rocks interpreted as a Paleoproterozoic magmatic arc. The belt, which contains economically important mineralization, was folded and subsequently cut by a swarm of northeast-striking transcurrent faults, which are part of a regional conjugate fault system interpreted to result from terminal collision of the Nahanni – Fort Simpson terrane. Fault reconstructions based on the interpretation of aeromagnetic data and geological maps provide first-order models of deformation mechanisms associated with, and the configuration of the Great Bear magmatic zone prior to, its dissection by northeast-striking transcurrent faults. The models show that vertical axis block rotation (plane strain) of ∼4.5° can explain fault offsets in the south, but that greater rotation is required to explain many of the displacements in the north. However, offsets on transcurrent faults that border the Camsell River district are greater than can be explained by vertical axis block rotation model alone and may include a component of Mesoproterozoic contractional deformation associated with the Racklan–Forward orogeny. Following reconstruction, iron oxide alkali alteration and associated mineralization, which pre-date transcurrent faulting, form a pair of northerly trending zones on the east and west margins of the belt. We suggest that these zones, whose exposure is related to broad synclinal folding of some of the oldest rocks in the Great Bear magmatic zone, are where iron oxide copper–gold (IOCG)-targeted exploration efforts should be focused on these areas in both outcrop and subcrop.


2003 ◽  
Vol 174 (3) ◽  
pp. 305-317 ◽  
Author(s):  
Thierry Beaudouin ◽  
Oliver Bellier ◽  
Michel Sebrier

Abstract Sulawesi Island, eastern Indonesia, is located at the junction between the Pacific-Philippine, Indo-Australian Plates, and the Sunda Block, i.e., the southeastern edge of the Eurasian Plate (fig. 1). Its peculiar shape results from an on-going complex history of collision and rotation of continental slivers, island arcs, and oceanic domains with respect to the Sunda Block. Seismic network document a high level of seismicity in its northern boundaries, corresponding to deformation along the North Sulawesi trench and within the Molucca Sea subduction (fig. 1). Seismic activity is lower in central and south Sulawesi (fig. 4). It represents the activity of the NE, SW and SE arms thrust and the left-lateral Central Sulawesi Fault System, which comprises the Palu-Koro and Matano fault zones. This system connects, from northwest to southeast, the North Sulawesi Subduction zone to the Sorong fault (through th Sud Sula fault, after, Hinschberger et al. [2000] and the Tolo thrust in the North Banda Sea, Silver et al., [1983] proposed a deformation model that implies a clockwise rotation of the Sula block that is limited to the west and south by the Central Sulawesi Fault System. Paleomagnetic [Surmont et al., 1994] and GPS [Walpersdorf et al., 1998a] studies confirm and measure this rotation. In order to discus the present day kinematics and deformation of Sulawesi area, we performed a seismotectonic study, using focal mechanism of moderate and large (Mw ≥ 5) shallow earthquake (≤ 60 Km), collected from the Harverd CMT database (period 1976 to 2001) and complemented by Fitch [1972] and Cardwell [1980] (period 1964–1976). From these focal mechanisms and the known structural context, we defined ten homogeneous deformation domains (fig. 3 et fig.5). For seven of these, focal solution and moment tensors were inverted (Carey-Gailhardis and Mercier method [1987Carey-Gailhardis and Mercier method [1992]) and summed, in order to obtain stress and deformation tensors and rate estimates (Brune [1968] or Kostrov [1974] methods). Results are presented in table I, on figure 2 and figure 3. In northern Molucca Sea (north of equvator), the fast convergence slip rate (75 mm/a) is absorbed by the Sangihe subduction and accommodates the major part of the Philippines/Sunda plates motion. South of the equator, the estimated slip rate is only 2 mm/yr and represents the Sangihe slap subduction, which is affected by a torsion from NNE to E strike. Along the North-Sulawesi fault system, direction of the stress axes are not significantly different from east to west (average N356°±5E), but the determined slip rates increase from 20±4 mm/a to 54±10 mm/a, respectively. These values agree with the Sula block rotation pole previously proposed and located at the eastern extremity of the Northern Arm. The Palu-Koro fault, bounding the western Sula block, contributes to this rotaion because its trace fits well a small circle centered on the pole. However, seisicity document few moderate magnitude earthquake (fig. 4) related to the left lateral Central Sulawesi fault system, despite many identified active tectonic feature [Beaudouin, 1998]. Moreover, geologically determined Palu-Koro long-term slip rate of 35±8 mm/a, [Bellier et al., 2001] agrees with the far-field strike-slip rate of 32–45 mm/a proposed from GPS measurement [Walpersdorf et al., 1998b ; Stevens et al., 1999]. This confirms that is a fast slipping fault with a relatively low level of seismicity. The southeastern limit of the Sula block is represented by the ENE-trending Sorong strike-slip fault that extends from Irian-Jaya island to the east coast of Sulawesi where it connects to the Matano fault through the South Sula fault, This structure is particularly active south of the Sula island with a major Mw=7.7 earthquake (29/11/98). The inversion provides a strike-slip regime with respectively N220°E and N310°E-trending σ1. and σ3 stress axes. This study also highlight the Sula block internal deformation that could explain in the GPS velocities model obtained by walpersdorf et al. [1998a] for the Sula block rotation. We evidence an extensional stress regime with a N030°E-trending σ3, in the southern part of the Tomini Gulf. The estimated extension rate is 9 mm/a toward a N036°E direction. Considering the location of the Tomini Gulf, this deformation could be interpreted as a back-arc spreading related to the North Sulawesi subduction. The Batui zone correspond to the domain of the collision wich occured in the early-middle Plicene [e.g., Velleneuve et al., 2000] between the NE arm and the Irian-jaya derived Banggaï-Sula block. This domain remains active (12 earthquake with a major one of Mw=7.6, 14/05/00, fig. 4) but is mainly affected by strike-slip deformation. The Tolo thrust, lying off the SE arm east coast, absorbs the convergence to the west of the North Banda Sea, as attested by six moderate earthquake with reverse faulting focal mechanisms. This allows to distinguish a North-Banda block in SE Sulawesi, bounded by the South Sula segment of the Sorong fault, the Tolo thrust and the Hamilton fault (fig. 5) and moving westward at a lower rate than the Sula block. The SW arm of Sulawesi is also characterised by a compressional stress regime with N099°E-trending σ1 and an estimated convergence rate of 8.5 mm/a toward a N080°E direction. This is the consequence of the Majene-Kalosi thrust activity and could represent the most western accommodation of the Philippines/Sunda plates motion.


2019 ◽  
Vol 56 (11) ◽  
pp. 1218-1238 ◽  
Author(s):  
Cengiz Zabcı

The slip history of the North Anatolian Fault (NAF) is constrained by displacement and age data for the last 550 ka. First, I classified all available geological estimates as members of three groups: Model I for the eastern, Model II for the central, and Model III for the western segments where the North Anatolian Shear Zone gradually widens from east to west. The short-term uniform slip solutions yield similar results, 17.5 +4/–3.5 mm/a, 18.9 +3.7/–3.3 mm/a, and 16.9 +1.2/–1.1 mm/a from east to the west. Although these model rates do not show any significant spatial variations among themselves, the correlation with geodetic estimates, ranging between 15 mm/a and 28 mm/a for different sections of the NAF, displays significant discrepancies especially for the central and western segments of the fault. Discrepancies suggest that most strain is accumulated along the NAF, but some portion of it is distributed along secondary structures of the North Anatolian Shear Zone. The deformation rate is constant at least for the last 195 ka, whereas the limited number of data show strain transfer from northern to the southern strand between 195 and 320 ka BP in the Marmara Region when the incremental slip rate decreases to 13.2 +3.1/–2.9 mm/a for the northern strand of the NAF. Considering the possible uncertainties of incremental displacements and their timings, more studies on slip rate are needed at different sites, including major structural elements of the North Anatolian Shear Zone. Although most of the strain is localized along the main displacement zone, the NAF, secondary structures are still capable of generating earthquakes that can hardly reach Mw 7.


2013 ◽  
Vol 40 (17) ◽  
pp. 4555-4559 ◽  
Author(s):  
Hulya Kurt ◽  
C. C. Sorlien ◽  
L. Seeber ◽  
M. S. Steckler ◽  
D. J. Shillington ◽  
...  

1996 ◽  
Vol 39 (3) ◽  
Author(s):  
R. Caputo

The Nea Anchialos Fault System has been studied integrating geological, morphological, structural, archaeological and seismic data. This fault system forms the northern boundary of the Almyros Basin which is one of the Neogene-Quaternary tectonic basins of Thessaly. Specific structural and geomorphological mapping were carried out and fault-slip data analysis allowed the Late Quaternary palaeo-stress field to be estimated. The resulting N-S trending purely extensional regime is consistent with the direction of the T-axes computed from the focal mechanisms of the summer 1980, Volos seismic sequence and the April 30, 1985 Almyros earthquake. A minor set of structural data indicates a WNW-ESE extension which has been interpreted as due to a local and second order stress field occurring during the N-S regional extension. Furthermore, new archaeological data, discovered by the author, have improved morphology and tectonics of the area also allowing a tentative estimate of the historic (III-IV century AD. to Present) fault slip rate. Several topographic profiles across the major E- W topographic escarpment as well as along the streams, have emphasised scarps and knick-points, further supporting the occurrence of very recent morphogenic activity. In the last section, the structural, morphological and archaeological data are compared with the already existing seismological data and their integrated analysis indicates that the Nea Anchialos Fault System has been active since Lower(?)-Middle Pleistocene.


2021 ◽  
Author(s):  
◽  
Vasiliki Mouslopoulou

<p>The North Island of New Zealand sits astride the Hikurangi margin along which the oceanic Pacific Plate is being obliquely subducted beneath the continental Australian Plate. The North Island Fault System1 (NIFS), in the North Island of New Zealand, is the principal active strike-slip fault system in the overriding Australian Plate accommodating up to 30% of the margin parallel plate motion. This study focuses on the northern termination of the NIFS, near its intersection with the active Taupo Rift, and comprises three complementary components of research: 1) the investigation of the late Quaternary (c. 30 kyr) geometries and kinematics of the northern NIFS as derived from displaced geomorphic landforms and outcrop geology, 2) examination of the spatial and temporal distribution of  paleoearthquakes in the NIFS over the last 18 kyr, as derived by fault-trenching and displaced landforms, and consideration of how these distributions may have produced the documented late Quaternary (c. 30 kyr) kinematics of the northern NIFS, and 3) Investigation of the temporal stability of the late Quaternary (c. 30 kyr) geometries and kinematics throughout the Quaternary (1-2 Ma), derived from gravity, seismic-reflection, drillhole, topographic and outcrop data. The late Quaternary (c. 30 kyr) kinematics of the northern NIFS transition northward along strike, from strike-slip to oblique-normal faulting, adjacent to the rift. With increasing proximity to the Taupo Rift the slip vector pitch on each of the faults in the NIFS steepens gradually by up to 60 degrees, while the mean fault-dip decreases from 90 degrees to 60 degrees W. Adjustments in the kinematics of the NIFS reflect the gradual accommodation of the NW-SE extension that is distributed outside the main physiographic boundary of the Taupo Rift. Sub-parallelism of slip vectors in the NIFS with the line of intersection between the two synchronous fault systems reduces potential space problems and facilitates the development of a kinematically coherent fault intersection, which allows the strike-slip component of slip to be transferred into the rift. Transfer of displacement from the NIFS into the rift accounts for a significant amount of the northeastward increase of extension along the rift. Steepening of the pitch of slip vectors towards the northern termination of the NIFS allows the kinematics and geometry of faulting to change efficiently, from strike-lip to normal faulting, providing an alternative mechanism to vertical axis rotations for terminating large strike-lip faults. Analyses of kinematic constraints from worldwide examples of synchronous strike-lip and normal faults that intersect to form two or three plate configurations, within either oceanic or continental crust, suggest that displacement is often transferred between the two fault systems in a similar manner to that documented at the NIFS - Taupo Rift fault intersection. The late Quaternary (c. 30 kyr) change in the kinematics of the NIFS along strike, from dominantly strike-slip to oblique-normal faulting, arises due to a combination of rupture arrest during individual earthquakes and variations in the orientation of the coseismic slip vectors. At least 80 % of all surface rupturing earthquakes appear to have terminated within the kinematic transition zone from strike-slip to oblique-normal slip. Fault segmentation reduces the magnitudes of large surface rupturing earthquakes in the northern NIFS from 7.4-7.6 to c. 7.0. Interdependence of throw rates between the NIFS and Taupo Rift suggests that the intersection of the two fault systems has functioned coherently for much of the last 0.6-1.5 Myr. Oblique-normal slip faults in the NIFS and the Edgecumbe Fault in the rift accommodated higher throw rates since 300 kyr than during the last 0.6-1.5 Myr. Acceleration of these throw rates may have occurred in response to eastward migration of rifting, increasing both the rates of faulting and the pitch of slip vectors. The late Quaternary (e.g. 30 kyr) kinematics, and perhaps also the stability, of the intersection zone has been geologically short lived and applied for the last c. 300 kyr.</p>


Sign in / Sign up

Export Citation Format

Share Document