Effects of Nonlinear Soil Behavior on Kappa (κ): Observations from the KiK-Net Database

Author(s):  
Chunyang Ji ◽  
Ashly Cabas ◽  
Luis Fabian Bonilla ◽  
Céline Gelis

ABSTRACT Soil nonlinear behavior is often triggered in soft sedimentary deposits subjected to strong ground shaking and has led to catastrophic damage to civil infrastructure in many past earthquakes. Nonlinear behavior in soils is associated with large shear strains, increased material damping ratio, and reduced stiffness. However, most investigations of the high-frequency spectral decay parameter κ, which captures attenuation, have focused on low-intensity ground motions inducing only small shear strains. Because studies of the applicability of the κ model when larger deformations are induced are limited, this article investigates the behavior of κ (both κr per record and site-specific κ0 estimates) beyond the linear-elastic regime. About 20 stations from the Kiban–Kyoshin network database, with time-average shear-wave velocities in the upper 30 m between 213 and 626  m/s, are used in this study. We find that the classification scheme used to identify ground motions that trigger soil nonlinear behavior biases estimates of κ0 in the linear and nonlinear regimes. A hybrid method to overcome such bias is proposed considering proxies for in situ deformation (via the shear-strain index) and ground shaking intensity (via peak ground acceleration). Our findings show that soil nonlinearity affects κr and κ0 estimates, but this influence is station dependent. Most κ0 at our sites had a 5%–20% increase at the onset of soil nonlinear behavior. Velocity gradients and impedance contrasts influence the degree of soil nonlinearity and its effects on κr and κ0. Moreover, we observe that other complexities in the wave propagation phenomenon (e.g., scattering and amplifications in the high-frequency range) impose challenges to the application of the κ0 model, including the estimation of negative values of κr.

1982 ◽  
Vol 72 (6A) ◽  
pp. 1957-1968
Author(s):  
Mansour Niazi

abstract Two sets of observations obtained during the 15 October 1979 Imperial Valley earthquake, MS 6.9, are presented. The data suggest different dynamic characteristics of the source when viewed in different frequency bands. The first data set consists of the observed residuals of the horizontal peak ground accelerations and particle velocity from predicted values within 50 km of the fault surface. The residuals are calculated from a nonlinear regression analysis of the data (Campbell, 1981) to the following empirical relationships, PGA = A 1 ( R + C 1 ) − d 1 , PGV = A 2 ( R + C 2 ) − d 2 in which R is the closest distance to the plane of rupture. The so-calculated residuals are correlated with a positive scalar factor signifying the focusing potential at each observation point. The focusing potential is determined on the basis of the geometrical relation of the station relative to the rupture front on the fault plane. The second data set consists of the acceleration directions derived from the windowed-time histories of the horizontal ground acceleration across the El Centro Differential Array (ECDA). The horizontal peak velocity residuals and the low-pass particle acceleration directions across ECDA require the fault rupture to propagate northwestward. The horizontal peak ground acceleration residuals and the high-frequency particle acceleration directions, however, are either inconclusive or suggest an opposite direction for rupture propagation. The inconsistency can best be explained to have resulted from the incoherence of the high-frequency radiation which contributes most effectively to the registration of PGA. A test for the sensitivity of the correlation procedure to the souce location is conducted by ascribing the observed strong ground shaking to a single asperity located 12 km northwest of the hypocenter. The resulting inconsistency between the peak acceleration and velocity observations in relation to the focusing potential is accentuated. The particle velocity of Delta Station, Mexico, in either case appears abnormally high and disagrees with other observations near the southeastern end of the fault trace. From the observation of a nearly continuous counterclockwise rotation of the plane of P-wave particle motion at ECDA, the average rupture velocity during the first several seconds of source activation is estimated to be 2.0 to 3.0 km/sec. A 3 km upper bound estimate of barrier dimensions is tentatively made on the basis of the observed quasiperiodic variation of the polarization angles.


1978 ◽  
Vol 68 (4) ◽  
pp. 1133-1145
Author(s):  
Walter W. Hays ◽  
Kenneth W. King ◽  
Robert B. Park

abstract This paper evaluates the duration of strong ground shaking that results from nuclear explosions and identifies some of the problems associated with its determination. Knowledge of the duration of horizontal ground shaking is important out to epicentral distances of about 44 km and 135 km, the approximate distances at which the ground shaking level falls to 0.01 g for nuclear explosions having yields of about 100 kt and 1,000 kt, respectively. Evaluation of the strong ground motions recorded from the event STRAIT (ML = 5.6) on a linear array of five, broad-band velocity seismographs deployed in the distance range 3.2 to 19.5 km provides information about the characteristics of the duration of ground shaking. The STRAIT data show that: (1) the definition that is used for defining duration is very important; (2) the duration of ground acceleration, as defined in terms of 90 per cent of the integral of the squared time history (Trifunac and Brady, 1975), increased from about 4 to 26 sec over the approximately 20-km distance range; and (3) the duration of ground velocity and displacement were slightly greater because of the effect of the alluvium layer on the propagating surface waves. Data from other events (e.g., MILROW, CANNIKIN, HANDLEY, PURSE) augment the STRAIT data and show that: (1) duration of shaking is increased by frequency-dependent site effects and (2) duration of shaking, as defined by the integral of the squared time history, does not increase as rapidly with increase in yield as is indicated by other definitions of duration that are stated in terms of an amplitude threshold (e.g., bracketed duration, response envelopes). The available data suggest that the duration of ground acceleration, based on the integral definition, varies from about 4 to 40 sec for a 100-kt range explosion and from about 4 to 105 sec for a megaton range explosion in the epicentral distance range of 0 to 44 km and 0 to 135 km, respectively.


Author(s):  
Yihe Huang

ABSTRACT A depletion of high-frequency ground motions on soil sites has been observed in recent large earthquakes and is often attributed to a nonlinear soil response. Here, I show that the reduced amplitudes of high-frequency horizontal-to-vertical spectral ratios (HVSRs) on soil can also be caused by a smooth crustal velocity model with low shear-wave velocities underneath soil sites. I calculate near-fault ground motions using both 2D dynamic rupture simulations and point-source models for both rock and soil sites. The 1D velocity models used in the simulations are derived from empirical relationships between seismic wave velocities and depths in northern California. The simulations for soil sites feature lower shear-wave velocities and thus larger Poisson’s ratios at shallow depths than those for rock sites. The lower shear-wave velocities cause slower shallow rupture and smaller shallow slip, but both soil and rock simulations have similar rupture speeds and slip for the rest of the fault. However, the simulated near-fault ground motions on soil and rock sites have distinct features. Compared to ground motions on rock, horizontal ground acceleration on soil is only amplified at low frequencies, whereas vertical ground acceleration is deamplified for the whole frequency range. Thus, the HVSRs on soil exhibit a depletion of high-frequency energy. The comparison between smooth and layered velocity models demonstrates that the smoothness of the velocity model plays a critical role in the contrasting behaviors of HVSRs on soil and rock for different rupture styles and velocity profiles. The results reveal the significant role of shallow crustal velocity structure in the generation of high-frequency ground motions on soil sites.


1984 ◽  
Vol 74 (6) ◽  
pp. 2061-2082
Author(s):  
Paul Spudich ◽  
L. Neil Frazer

Abstract We analyze the problem of calculating high-frequency ground motions (>1 Hz) caused by earthquakes having arbitrary spatial variations of rupture velocity and slip velocity (or stress drop) over the fault. We approximate the elastic wave Green's functions by far-field body waves, which we calculate using geometric ray theory. However, we do not make the traditional Fraunhofer approximation, so our method may be used close to large faults. The method is confined to high frequencies (greater than about 1 Hz) due to the omisson of near-field terms, and must be used at source-observer distances less than a few source depths, due to the omission of surface waves. It is easily used in laterally varying velocity structures. Assuming a simple parameterization of the slip function, the computational problem collapses to the evaluation of a series of line integrals over the fault, with one line integral per each time ti in the observer seismogram. The path of integration corresponding to observation time ti consists of only those points on the fault which radiate body waves arriving at the observer at exactly time ti. This path is an isochron of the arrival time function. An isochron velocity may be defined that depends on rupture velocity and resembles the usual directivity function. Observed ground motions are directly dependent upon this isochron velocity. Ground velocity is proportional to isochron velocity and ground acceleration is proportional to isochron acceleration in dislocation models of rupture. Ground acceleration may also be related to spatial variations of slip velocity on the fault, using the square of isochron velocity as a constant of proportionality. We show two rupture models, one with variable slip velocity and the other with variable rupture velocity, that cause the same ground acceleration at a single observer. The computational method is shown to produce reasonably accurate synthetic seismograms, compared to a method using complete Green's functions, and requires about 0.5 per cent of the computer time. It may be very effective in calculating ground motions in the frequency band 1 to 10 Hz at observers within a few source depths of large earthquakes, where most of the high-frequency motions may be caused by direct P and S waves. We suggest a possible method for inverting ground motions for both slip velocity and rupture velocity over the fault.


1996 ◽  
Vol 86 (1A) ◽  
pp. 106-112 ◽  
Author(s):  
Gail M. Atkinson

Abstract The high-frequency shape of the earthquake spectrum strongly influences the amplitude of the peak ground acceleration and of the response spectrum at frequencies of 10 Hz and greater. A key parameter for the description of high-frequency ground motions is “kappa,” which is the decay slope of the Fourier spectrum of acceleration at near-source distances (Anderson and Hough, 1984; note Anderson and Hough originally referred to this parameter as kappa (0)). Kappa may be attributed to site effects (fmax; Hanks, 1982), source processes (Papageorgiou and Aki, 1983), or both. Seismographic data place weak but significant constraints on kappa values. On average, there is no resolved kappa effect on spectra recorded at rock sites in eastern Canada, in the frequency range f ≦ 30 Hz. Four firm-soil sites in southwestern Ontario also show no kappa effect. An implied upper bound for kappa is 0.004 (or lower bound of 30 Hz for fmax). By contrast, source spectra from earthquakes in the Cascadia region, recorded on hard-rock sites in southwestern British Columbia (B.C.), appear to be well described by a kappa of 0.011 ± 0.002. The B.C. spectra are thus intermediate to the eastern case, with zero apparent kappa, and the typical California case, for which kappa is about 0.04.


2017 ◽  
Vol 6 (2) ◽  
pp. 45-52
Author(s):  
Berevoescu Ileana Carmen

Abstract Actually, the seismic movement has an irregular cyclic character.This can be equivalent to a determined number of uniform cyclical stresses equivalent in terms of effect. Modeling the behavior of the soil to cyclical stress, is usually done, by establishing a relationship for primary loading like τ = f (γ) and after drawing the diagram “effortless strain curve”, in which τ is the stress, and γ is shear deformation. For modeling nonlinear behavior of the soil, we used like nonlinear models. The best known are the hyperbolic model and the Ramberg-Osgood model.


2014 ◽  
Vol 9 (3) ◽  
pp. 281-293 ◽  
Author(s):  
Takashi Furumura ◽  
◽  

Ground motion from theMw9.0 March 11, 2011, Off-Tohoku earthquake recorded by dense seismic networks in Japan, K-NET and KiK-net, clearly demonstrated the high-frequency seismic wavefield radiating from the earthquake source and developing longperiod ground motion in sedimentary basins. The photographic sequence of the visualized wavefield demonstrated the process in which the high-frequency seismic waves radiated from large slips at the top of the subducting Pacific Plate at relatively deeper depth of 25-50 km, which caused multiple large shocks of large (>1000-2000 cm/s2) ground acceleration and several minutes lasting ground motions over a wide area along the Pacific Ocean side of northern Japan. An efficient seismic wave propagation along the subducting Pacific slab and ground motion amplification in a superficial thin low-velocity layer overlying rigid bedrock also enhanced high-frequency (>5 Hz) ground motions very drastically. However, the dominant frequency of the strong ground motion recorded in nearfield station was too high such as to cause serious damage to wooden-frame residences having relatively longer-period resonance period (T= 1-2 s); The velocity response in this frequency band was only about one third to one half of those observed in severely damaged area during the destructiveMw6.9 1995 Kobe earthquake. The 2011 Off-Tohoku earthquake also produced long-period ground motion in sedimentary basins such those at Tokyo’s population center but observation of the long-period ground motion withinT=6-8 s was rather weak and of a level comparable to that of anM7.9 Tonankai earthquake occurring along the Nankai Trough in 1944. This was because the surface wave in this period band was not generated efficiently by the relatively deeper slip over the source fault of the Off-Tohoku earthquake.


2021 ◽  
pp. 875529302110279
Author(s):  
Sanaz Rezaeian ◽  
Linda Al Atik ◽  
Nicolas M Kuehn ◽  
Norman Abrahamson ◽  
Yousef Bozorgnia ◽  
...  

This article develops global models of damping scaling factors (DSFs) for subduction zone earthquakes that are functions of the damping ratio, spectral period, earthquake magnitude, and distance. The Next Generation Attenuation for subduction earthquakes (NGA-Sub) project has developed the largest uniformly processed database of recorded ground motions to date from seven subduction regions: Alaska, Cascadia, Central America and Mexico, South America, Japan, Taiwan, and New Zealand. NGA-Sub used this database to develop new ground motion models (GMMs) at a reference 5% damping ratio. We worked with the NGA-Sub project team to develop an extended database that includes pseudo-spectral accelerations (PSA) for 11 damping ratios between 0.5% and 30%. We use this database to develop parametric models of DSF for both interface and intraslab subduction earthquakes that can be used to adjust any subduction GMM from a reference 5% damping ratio to other damping ratios. The DSF is strongly influenced by the response spectral shape and the duration of motion; therefore, in addition to the damping ratio, the median DSF model uses spectral period, magnitude, and distance as surrogate predictor variables to capture the effects of the spectral shape and the duration of motion. We also develop parametric models for the standard deviation of DSF. The models presented in this article are for the RotD50 horizontal component of PSA and are compared with the models for shallow crustal earthquakes in active tectonic regions. Some noticeable differences arise from the considerably longer duration of interface records for very large magnitude events and the enriched high-frequency content of intraslab records, compared with shallow crustal earthquakes. Regional differences are discussed by comparing the proposed global models with the data from each subduction region along with recommendations on the applicability of the models.


Sign in / Sign up

Export Citation Format

Share Document