Estimation of Site Amplification from Geotechnical Array Data Using Neural Networks

Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.

1993 ◽  
Vol 32 (01) ◽  
pp. 55-58 ◽  
Author(s):  
M. N. Narayanan ◽  
S. B. Lucas

Abstract:The ability of neural networks to predict the international normalised ratio (INR) for patients treated with Warfarin was investigated. Neural networks were obtained by using all the predictor variables in the neural network, or by using a genetic algorithm to select an optimal subset of predictor variables in a neural network. The use of a genetic algorithm gave a marked and significant improvement in the prediction of the INR in two of the three cases investigated. The mean error in these cases, typically, reduced from 1.02 ± 0.29 to 0.28 ± 0.25 (paired t-test, t = −4.71, p <0.001, n = 30). The use of a genetic algorithm with Warfarin data offers a significant enhancement of the predictive ability of a neural network with Warfarin data, identifies significant predictor variables, reduces the size of the neural network and thus the speed at which the reduced network can be trained, and reduces the sensitivity of a network to over-training.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012148
Author(s):  
P A Khorin ◽  
A P Dzyuba ◽  
P G Serafimovich ◽  
S N Khonina

Abstract Recognition of the types of aberrations corresponding to individual Zernike functions were carried out from the pattern of the intensity of the point spread function (PSF) outside the focal plane using convolutional neural networks. The PSF intensity patterns outside the focal plane are more informative in comparison with the focal plane even for small values/magnitudes of aberrations. The mean prediction errors of the neural network for each type of aberration were obtained for a set of 8 Zernike functions from a dataset of 2 thousand pictures of out-of-focal PSFs. As a result of training, for the considered types of aberrations, the obtained averaged absolute errors do not exceed 0.0053, which corresponds to an almost threefold decrease in the error in comparison with the same result for focal PSFs.


Author(s):  
Qipin Chen ◽  
Wenrui Hao

In this paper, we present a homotopy training algorithm (HTA) to solve optimization problems arising from fully connected neural networks with complicated structures. The HTA dynamically builds the neural network starting from a simplified version and ending with the fully connected network via adding layers and nodes adaptively. Therefore, the corresponding optimization problem is easy to solve at the beginning and connects to the original model via a continuous path guided by the HTA, which provides a high probability of obtaining a global minimum. By gradually increasing the complexity of the model along the continuous path, the HTA provides a rather good solution to the original loss function. This is confirmed by various numerical results including VGG models on CIFAR-10. For example, on the VGG13 model with batch normalization, HTA reduces the error rate by 11.86% on the test dataset compared with the traditional method. Moreover, the HTA also allows us to find the optimal structure for a fully connected neural network by building the neutral network adaptively.


2021 ◽  
Author(s):  
Marco Maniglio ◽  
Giorgio Fighera ◽  
Laura Dovera ◽  
Carlo Cristiano Stabile

Abstract In recent years great interest has risen towards surrogate reservoir models based on data-driven methodologies with the purpose of speeding up reservoir management decisions. In this work, a Physics Informed Neural Network (PINN) based on a Capacitance Resistance Model (CRM) has been developed and tested on a synthetic and on a real dataset to predict the production of oil reservoirs under waterflooding conditions. CRMs are simple models based on material balance that estimate the liquid production as a function of injected water and bottom hole pressure. PINNs are Artificial Neural Networks (ANNs) that incorporate prior physical knowledge of the system under study to regularize the network. A PINN based on a CRM is obtained by including the residual of the CRM differential equations in the loss function designed to train the neural network on the historical data. During training, weights and biases of the network and parameters of the physical equations, such as connectivity factors between wells, are updated with the backpropagation algorithm. To investigate the effectiveness of the novel methodology on waterflooded scenarios, two test cases are presented: a small synthetic one and a real mature reservoir. Results obtained with PINN are compared with respect to CRM and ANN alone. In the synthetic case CRM and PINN give slightly better quality history matches and predictions than ANN. The connectivity factors estimated by CRM and PINN are very similar and correctly represent the underlying geology. In the real case PINN gives better quality history matches and predictions than ANN, and both significantly outperform CRM. Even though the CRM formulation is too simple to predict the complex behavior of a real reservoir, the CRM based regularization contributes to improving the PINN predictions quality compared to the purely data-driven ANN model. The connectivity factors estimated by CRM and PINN are not in agreement. However, the latter method provided results closer to our understanding of the flooding process after many years of operations and data analysis. All considered, PINN outperformed both CRM and ANN in terms of predictivity and interpretability, effectively combining strengths from both methodologies. The presented approach does not require the construction of a 3D model since it learns directly from production data, while preserving physical consistency. Moreover, it represents a computationally inexpensive alternative to traditional full-physics reservoir simulations which could have vast applications for problems requiring many forward evaluations, like the optimization of water allocation for mature reservoirs.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 103-109
Author(s):  
Andrey I. Mamontov ◽  

In solving the classification problem, a fully connected trainable neural network (with adjusting the parameters represented by double-precision real numbers) is used as a mathematical model. After the training is completed, the neural network parameters are rounded and represented as fixed-point numbers (integers). The aim of the study is to reduce the required amount of the computing system memory for storing the obtained integer parameters. To reduce the amount of memory, the following methods for storing integer parameters are developed, which are based on representing the linear polynomials included in a fully connected neural network using compositions of simpler functions: - a method based on representing the considered polynomial as a sum of simpler polynomials; - a method based on separately storing the information about additions and multiplications. In the experiment with the MNIST data set, it took 1.41 MB to store real parameters of a fully connected neural network, 0.7 MB to store integer parameters without using the proposed methods, 0.47 MB in the RAM and 0.3 MB in compressed form on the disk when using the first method, and 0.25 MB on the disk when using the second method. In the experiment with the USPS data set, it took 0.25 MB to store real parameters of a fully connected neural network, 0.1 MB to store integer parameters without using the proposed methods, 0.05 MB in the RAM and approximately the same amount in compressed form on the disk when using the first method, and 0.03 MB on the disk when using the second method. The study results can be applied in using fully connected neural networks to solve various recognition problems under the conditions of limited hardware capacities.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Qi ◽  
Yanan Zhao ◽  
Yufang Huang ◽  
Yang Wang ◽  
Wei Qin ◽  
...  

AbstractThe accurate and nondestructive assessment of leaf nitrogen (N) is very important for N management in winter wheat fields. Mobile phones are now being used as an additional N diagnostic tool. To overcome the drawbacks of traditional digital camera diagnostic methods, a histogram-based method was proposed and compared with the traditional methods. Here, the field N level of six different wheat cultivars was assessed to obtain canopy images, leaf N content, and yield. The stability and accuracy of the index histogram and index mean value of the canopy images in different wheat cultivars were compared based on their correlation with leaf N and yield, following which the best diagnosis and prediction model was selected using the neural network model. The results showed that N application significantly affected the leaf N content and yield of wheat, as well as the hue of the canopy images and plant coverage. Compared with the mean value of the canopy image color parameters, the histogram could reflect both the crop coverage and the overall color information. The histogram thus had a high linear correlation with leaf N content and yield and a relatively stable correlation across different growth stages. Peak b of the histogram changed with the increase in leaf N content during the reviving stage of wheat. The histogram of the canopy image color parameters had a good correlation with leaf N content and yield. Through the neural network training and estimation model, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the estimated and measured values of leaf N content and yield were smaller for the index histogram (0.465, 9.65%, and 465.12, 5.5% respectively) than the index mean value of the canopy images (0.526, 12.53% and 593.52, 7.83% respectively), suggesting a good fit for the index histogram image color and robustness in estimating N content and yield. Hence, the use of the histogram model with a smartphone has great potential application in N diagnosis and prediction for wheat and other cereal crops.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Nadica Stojanović ◽  
Ivan Grujić

According to the World Health Organization, air pollution with PM10 and PM2.5 (PM-particulate matter) is a significant problem that can have serious consequences for human health. Vehicles, as one of the main sources of PM10 and PM2.5 emissions, pollute the air and the environment both by creating particles by burning fuel in the engine, and by wearing of various elements in some vehicle systems. In this paper, the authors conducted the prediction of the formation of PM10 and PM2.5 particles generated by the wear of the braking system using a neural network (Artificial Neural Networks (ANN)). In this case, the neural network model was created based on the generated particles that were measured experimentally, while the validity of the created neural network was checked by means of a comparative analysis of the experimentally measured amount of particles and the prediction results. The experimental results were obtained by testing on an inertial braking dynamometer, where braking was performed in several modes, that is under different braking parameters (simulated vehicle speed, brake system pressure, temperature, braking time, braking torque). During braking, the concentration of PM10 and PM2.5 particles was measured simultaneously. The total of 196 measurements were performed and these data were used for training, validation, and verification of the neural network. When it comes to simulation, a comparison of two types of neural networks was performed with one output and with two outputs. For each type, network training was conducted using three different algorithms of backpropagation methods. For each neural network, a comparison of the obtained experimental and simulation results was performed. More accurate prediction results were obtained by the single-output neural network for both particulate sizes, while the smallest error was found in the case of a trained neural network using the Levenberg-Marquardt backward propagation algorithm. The aim of creating such a prediction model is to prove that by using neural networks it is possible to predict the emission of particles generated by brake wear, which can be further used for modern traffic systems such as traffic control. In addition, this wear algorithm could be applied on other vehicle systems, such as a clutch or tires.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett H. Hokr ◽  
Joel N. Bixler

AbstractDynamic, in vivo measurement of the optical properties of biological tissues is still an elusive and critically important problem. Here we develop a technique for inverting a Monte Carlo simulation to extract tissue optical properties from the statistical moments of the spatio-temporal response of the tissue by training a 5-layer fully connected neural network. We demonstrate the accuracy of the method across a very wide parameter space on a single homogeneous layer tissue model and demonstrate that the method is insensitive to parameter selection of the neural network model itself. Finally, we propose an experimental setup capable of measuring the required information in real time in an in vivo environment and demonstrate proof-of-concept level experimental results.


Sign in / Sign up

Export Citation Format

Share Document