On Computer Memory Saving Methods in Performing Data Classification Using Fully Connected Neural Networks
In solving the classification problem, a fully connected trainable neural network (with adjusting the parameters represented by double-precision real numbers) is used as a mathematical model. After the training is completed, the neural network parameters are rounded and represented as fixed-point numbers (integers). The aim of the study is to reduce the required amount of the computing system memory for storing the obtained integer parameters. To reduce the amount of memory, the following methods for storing integer parameters are developed, which are based on representing the linear polynomials included in a fully connected neural network using compositions of simpler functions: - a method based on representing the considered polynomial as a sum of simpler polynomials; - a method based on separately storing the information about additions and multiplications. In the experiment with the MNIST data set, it took 1.41 MB to store real parameters of a fully connected neural network, 0.7 MB to store integer parameters without using the proposed methods, 0.47 MB in the RAM and 0.3 MB in compressed form on the disk when using the first method, and 0.25 MB on the disk when using the second method. In the experiment with the USPS data set, it took 0.25 MB to store real parameters of a fully connected neural network, 0.1 MB to store integer parameters without using the proposed methods, 0.05 MB in the RAM and approximately the same amount in compressed form on the disk when using the first method, and 0.03 MB on the disk when using the second method. The study results can be applied in using fully connected neural networks to solve various recognition problems under the conditions of limited hardware capacities.