Seismotectonics of the 2017–2018 Songyuan Earthquake Sequence, Northeastern China: Passive Bookshelf Faulting and Block Rotation in the Songliao Basin

2020 ◽  
Vol 91 (3) ◽  
pp. 1593-1605
Author(s):  
Zhe Su ◽  
Xi-Wei Xu ◽  
Shan-Shan Liang ◽  
Erchie Wang

Abstract The high frequency of earthquake clusters generated by pure strike-slip faulting over the past 3 yr (beginning in 2017 in the Songliao basin, northeastern China) has motivated us to consider why lateral strike slip and not extension determines the seismic activity within the Songliao basin. Precise location and characterization of relocated aftershocks, forward modeling of the coseismic displacement field, and Global Positioning System (GPS) monitoring data are combined to detect the possible seismogenic structures of the Songyuan earthquake sequence. The 2017 ML 5.3 aftershock cluster coincided with the northeast-striking Fuyu–Zhaodong fault (FZF), and the 2018 aftershock swarm followed the linear trend (N42°W) of the Songhuajiang fault (SHF). In addition, the forward modeling results indicate that during the earthquakes, right-lateral and left-lateral strike-slip displacements occurred simultaneously along the FZF and SHF, respectively. These two strike-slip faults joined to accommodate the intervening crustal blocks’ asymmetrical east–west convergence and a single northward extrusion. We also utilize 5 yr of GPS data to construct the regional strain-rate map for the basin. The measurements show that right-lateral transform motion along the immense northeast-striking right-lateral strike-slip faults, for example, the Tanlu fault zone and the FZF, impose a northeast-striking simple shear across the Songliao basin. This simple shear not only caused left-lateral movement on the minor northwest-striking left-lateral strike-slip faults such as the SHF but also rotated them ∼14° clockwise into their present orientations. The results of the proposed bookshelf faulting model in which the predominant northeast-striking parallel faults are initiated are consistent with the observed lineament orientations, focal mechanisms, and earthquake distributions. The sharp shift in the subduction direction of the Pacific plate seems to have had a considerable influence on the intracontinental deformation in China, at least throughout northeastern China.

Author(s):  
Fred F. Pollitz ◽  
Charles W. Wicks ◽  
Jerry L. Svarc ◽  
Eleyne Phillips ◽  
Benjamin A. Brooks ◽  
...  

ABSTRACT The 2019 Ridgecrest, California, earthquake sequence involved predominantly right-lateral strike slip on a northwest–southeast-trending subvertical fault in the 6 July M 7.1 mainshock, preceded by left-lateral strike slip on a northeast–southwest-trending subvertical fault in the 4 July M 6.4 foreshock. To characterize the postseismic deformation, we assemble displacements measured by Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar. The geodetic measurements illuminate vigorous postseismic deformation for at least 21 months following the earthquake sequence. The postseismic transient deformation is particularly well constrained from survey-mode GPS (sGPS) in the epicentral region carried out during the weeks after the mainshock. We interpret these observations with mechanical models including afterslip and viscoelastic relaxation of the lower crust and mantle asthenosphere. During the first 21 months, up to several centimeters of horizontal motions are measured at continuous GPS and sGPS sites, with amplitude that diminishes slowly with distance from the mainshock rupture, suggestive of deeper afterslip or viscoelastic relaxation. We find that although afterslip involving right-lateral strike slip along the mainshock fault traces and their deeper extensions reach a few decimeters, most postseismic deformation is attributable to viscoelastic relaxation of the lower crust and mantle. Within the Basin and Range crust and mantle, we infer a transient lower crust viscosity several times that of the mantle asthenosphere. The transient mantle asthenosphere viscosity is ∼1.3×1017  Pa s, and the adjacent Central Valley transient mantle asthenosphere viscosity is ∼7×1017  Pa s, about five times higher and consistent with an asymmetry in postseismic horizontal motions across the mainshock surface rupture.


Author(s):  
Ellen M. Smith ◽  
Hilary R. Martens ◽  
Michael C. Stickney

Abstract One of the most seismically active regions in the United States, located hundreds of kilometers inland from the nearest plate boundary, is the Intermountain Seismic Belt (ISB). The 6 July 2017 M 5.8 earthquake occurred 11 km southeast of Lincoln, Montana, within the ISB. This was the largest earthquake to rupture in the state of Montana since the 1959 M 7.3 Hebgen Lake earthquake. We use continuous seismic data from the University of Montana Seismic Network, the Montana Regional Seismic Network, and the U.S. Geological Survey to investigate the Lincoln aftershock sequence and to evaluate crustal stress conditions. We manually picked P- and S-wave arrival times, computed 4110 hypocenter locations and 2336 double-difference relocations, and generated focal mechanisms for 414 aftershocks (12+ polarities) in the 2 yr following the mainshock. Based on the alignment of aftershocks, we infer that the mainshock occurred on a north–northeast-trending left-lateral strike-slip fault. The orientation of the fault is unexpected, given that it strikes nearly perpendicular to the prominent Lewis and Clark line (LCL) faults in the area. Although most aftershocks concentrate near the mainshock, several distinct clusters of microseismic activity emerge along subparallel faults located primarily to the west of the mainshock. The subparallel faults also exhibit left-lateral strike-slip motion oblique to the LCL. We postulate that the aftershocks reveal the clockwise rotation of local-scale crustal blocks about vertical axes within a larger, right-lateral shear zone. The inferred block rotations are consistent with a bookshelf-faulting mechanism, which likely accommodates differential crustal motion to the north and south of the LCL region. The tension axes of well-constrained focal mechanisms indicate local northeast–southwest extension with a mean direction of N60°E.


Author(s):  
Marjolein Blasweiler ◽  
Matthew W. Herman ◽  
Fenna Houtsma ◽  
Rob Govers

Abstract An historically unprecedented seismic moment was released by crustal events of the 2019–2020 earthquake sequence near southwest Puerto Rico. The sequence involved at least two, and perhaps three interacting fault systems. The largest Mw 6.4 event was likely triggered by left lateral strike-slip events along the eastern extension of the North Boquerón Bay-Punta Montalva fault zone. The mainshock occurred in a normal fault zone that extends into a region where previous studies documented extensional deformation, beyond the Ponce fault and the Bajo Tasmanian fault. Coulomb stress changes by the mainshock may have triggered further normal-faulting aftershocks, left lateral strike-slip events in the region where these two fault zones interacted, and possibly right lateral strike-slip aftershocks along a third structure extending southward, the Guayanilla fault zone. Extension directions of the seismic sequence are consistently north-northwest–south-southeast-oriented, in agreement with the Global Navigation Satellite Systems-inferred motion direction of eastern Hispaniola relative to western Puerto Rico, and with crustal stress estimates for the overriding plate boundary zone.


2020 ◽  
Vol 12 (23) ◽  
pp. 3883
Author(s):  
Chenglong Li ◽  
Guohong Zhang ◽  
Xinjian Shan ◽  
Dezheng Zhao ◽  
Yanchuan Li ◽  
...  

The 2019 Ridgecrest, California earthquake sequence ruptured along a complex fault system and triggered seismic and aseismic slips on intersecting faults. To characterize the surface rupture kinematics and fault slip distribution, we used optical images and Interferometric Synthetic Aperture Radar (InSAR) observations to reconstruct the displacement caused by the earthquake sequence. We further calculated curl and divergence from the north-south and east-west components, to effectively identify the surface rupture traces. The results show that the major seismogenic fault had a length of ~55 km and strike of 320° and consisted of five secondary faults. On the basis of the determined multiple-fault geometries, we inverted the coseismic slip distributions by InSAR measurements, which indicates that the Mw7.1 mainshock was dominated by the right-lateral strike-slip (maximum strike-slip of ~5.8 m at the depth of ~7.5 km), with a small dip-slip component (peaking at ~1.8 m) on an east-dipping fault. The Mw6.4 foreshock was dominated by the left-lateral strike-slip on a north-dipping fault. These earthquakes triggered obvious aseismic creep along the Garlock fault (117.3° W–117.5° W). These results are consistent with the rupture process of the earthquake sequence, which featured a complicated cascading rupture rather than a single continuous rupture front propagating along multiple faults.


2020 ◽  
Vol 110 (4) ◽  
pp. 1688-1700 ◽  
Author(s):  
Fred F. Pollitz ◽  
Jessica R. Murray ◽  
Jerry L. Svarc ◽  
Charles Wicks ◽  
Evelyn Roeloffs ◽  
...  

ABSTRACT The 2019 Ridgecrest, California, earthquake sequence produced observable crustal deformation over much of central and southern California, as well as surface rupture over several tens of kilometers. To obtain a detailed picture of the fault slip involved in the 4 July M 6.4 foreshock and 6 July M 7.1 mainshock, we combine strong-motion seismic waveforms with crustal deformation observations to obtain kinematic and static slip models of both events. We sample the regional seismic wavefield for both the foreshock and mainshock with three-component records from 31 stations of the California Integrated Seismic Network. The deformation observations include Global Positioning System (GPS), Interferometric Synthetic Aperture Radar (InSAR), and borehole strainmeter recordings of the dynamic strain field. These data collectively constrain the kinematic coseismic slip distributions of the events, with measurements variously observing coseismic slip from one event (e.g., seismic waveforms, kinematic solutions from continuous GPS, and strainmeter time series) or coseismic slip from both events combined (InSAR). We find that the foreshock ruptured two separate faults, one with left-lateral strike slip on a northeast–southwest-trending fault and the other with right-lateral strike slip on an orthogonal fault, with unilateral rupture propagation along both. The mainshock ruptured a series of northwest–southeast-trending faults with right-lateral strike slip concentrated in the uppermost 6 km with exceptionally low-rupture velocity averaging 1.0–1.5  km/s. A possible explanation for the low-rupture velocity is that the mainshock rupture expended relatively high energy, generating secondary fractures in off-fault deformation, which is consistent with field and seismic evidence of plastic deformation on small fault strands adjacent to the main rupture trace.


Sign in / Sign up

Export Citation Format

Share Document