scholarly journals Characterization of an Intraplate Seismogenic Zone Using Geophysical and Borehole Data: The Vila Franca de Xira Fault, Portugal

2020 ◽  
Vol 91 (4) ◽  
pp. 2287-2297
Author(s):  
João Carvalho ◽  
Daniela Alves ◽  
João Cabral ◽  
Ranajit Ghose ◽  
José Borges ◽  
...  

Abstract The Vila Franca de Xira (VFX) fault is a regional fault zone located about 25 km northeast of Lisbon, affecting Neogene sediments. Recent shear-wave seismic studies show that this complex fault zone is buried beneath Holocene sediments and is deforming the alluvial cover, in agreement with a previous work that proposes the fault as the source of the 1531 Lower Tagus Valley earthquake. In this work, we corroborate these results using S-wave, P-wave, geoelectric, ground-penetrating radar and borehole data, confirming that the sediments deformed by several fault branches are of Upper Pleistocene to Holocene. Accumulated fault vertical offsets of about 3 m are estimated from the integrated interpretation of geophysical and borehole data, including 2D elastic seismic modeling, with an estimated resolution of about 0.5 m. The deformations affecting the Tagus alluvial sediments probably resulted from surface or near-surface rupture of the VFX fault during M∼7 earthquakes, reinforcing the fault as the seismogenic source of regional historical events, as in 1531, and highlighting the need for preparedness for the next event.

1991 ◽  
Vol 81 (4) ◽  
pp. 1057-1080 ◽  
Author(s):  
Richard C. Aster ◽  
Peter M. Shearer

Abstract Two borehole seismometer arrays (KNW-BH and PFO-BH) have been established in the Southern California Batholith region of the San Jacinto Fault zone by the U.S. Geological Survey. The sites are within 0.4 km of Anza network surface stations and have three-component seismometers deployed at 300 m depth, at 150 m depth, and at the surface. Downhole horizontal seismometers can be oriented to an accuracy of about 5° using regional and near-regional initial P-wave particle motions. Shear waves recorded downhole at the KNW-BH indicate that the strong alignment of initial S-wave particle motions previously observed at the (surface) KNW Anza site (KNW-AZ) is not generated in the near-surface weathered layer. The KNW-BH surface instrument, which sits atop a highly weathered zone, displays a significantly different (≈ 20°) initial S-wave polarization direction from that observed downhole and at KNW-AZ, which is bolted to an outcrop. Although downhole initial shear-wave particle motion directions are consistent with a shear-wave splitting hypothesis, observations of orthogonally polarized slow shear waves are generally elusive, even in seismograms recorded at 300 m. A cross-correlation measure of the apparent relative velocities of Sfast and Sslow horizontally polarized S waves suggests shallow shear-wave anisotropy, consistent with the observed initial S-wave particle motion direction, of 2.3 ± 1.7 per cent between 300 and 150 m and 7.5 ± 3.5 per cent between 150 and 0 m.


2022 ◽  
Vol 41 (1) ◽  
pp. 40-46
Author(s):  
Öz Yilmaz ◽  
Kai Gao ◽  
Milos Delic ◽  
Jianghai Xia ◽  
Lianjie Huang ◽  
...  

We evaluate the performance of traveltime tomography and full-wave inversion (FWI) for near-surface modeling using the data from a shallow seismic field experiment. Eight boreholes up to 20-m depth have been drilled along the seismic line traverse to verify the accuracy of the P-wave velocity-depth model estimated by seismic inversion. The velocity-depth model of the soil column estimated by traveltime tomography is in good agreement with the borehole data. We used the traveltime tomography model as an initial model and performed FWI. Full-wave acoustic and elastic inversions, however, have failed to converge to a velocity-depth model that desirably should be a high-resolution version of the model estimated by traveltime tomography. Moreover, there are significant discrepancies between the estimated models and the borehole data. It is understandable why full-wave acoustic inversion would fail — land seismic data inherently are elastic wavefields. The question is: Why does full-wave elastic inversion also fail? The strategy to prevent full-wave elastic inversion of vertical-component geophone data trapped in a local minimum that results in a physically implausible near-surface model may be cascaded inversion. Specifically, we perform traveltime tomography to estimate a P-wave velocity-depth model for the near-surface and Rayleigh-wave inversion to estimate an S-wave velocity-depth model for the near-surface, then use the resulting pairs of models as the initial models for the subsequent full-wave elastic inversion. Nonetheless, as demonstrated by the field data example here, the elastic-wave inversion yields a near-surface solution that still is not in agreement with the borehole data. Here, we investigate the limitations of FWI applied to land seismic data for near-surface modeling.


2021 ◽  
Author(s):  
JD Eccles ◽  
AK Gulley ◽  
PE Malin ◽  
CM Boese ◽  
John Townend ◽  
...  

© 2015. American Geophysical Union. All Rights Reserved. Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35Hz) have been recorded on shallow borehole seismometers installed within 20m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.


1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 460-465 ◽  
Author(s):  
Rob Long ◽  
Thomas Vogt ◽  
Mike Lowe ◽  
Peter Cawley

A technique is presented that uses a circular ultrasonic waveguide to measure the bulk shear (S‐wave) and longitudinal (P‐wave) velocities of unconsolidated media, with particular application to near‐surface soils. The technique requires measuring the attenuation characteristics of the fundamental longitudinal mode that propagates along an embedded bar, from which the acoustic properties of the surrounding medium are inferred. The principles behind the technique are discussed, and the results of an experimental laboratory validation are presented, followed by details of in‐situ soil property measurements obtained at various sites in urban areas of the United Kingdom.


2015 ◽  
Vol 3 (1) ◽  
pp. SF43-SF54 ◽  
Author(s):  
Shelby L. Peterie ◽  
Richard D. Miller

Tunnel locations are accurately interpreted from diffraction sections of focused mode converted P- to S-wave diffractions from a perpendicular tunnel and P-wave diffractions from a nonperpendicular (oblique) tunnel. Near-surface tunnels are ideal candidates for diffraction imaging due to their small size relative to the seismic wavelength and large acoustic impedance contrast at the tunnel interface. Diffraction imaging algorithms generally assume that the velocities of the primary wave and the diffracted wave are approximately equal, and that the diffraction apex is recorded directly above the scatterpoint. Scattering phenomena from shallow tunnels with kinematic properties that violate these assumptions were observed in one field data set and one synthetic data set. We developed the traveltime equations for mode-converted and oblique diffractions and demonstrated a diffraction imaging algorithm designed for the roll-along style of acquisition. Potential processing and interpretation pitfalls specific to these diffraction types were identified. Based on our observations, recommendations were made to recognize and image mode-converted and oblique diffractions and accurately interpret tunnel depth, horizontal location, and azimuth with respect to the seismic line.


2019 ◽  
Vol 92 ◽  
pp. 18006
Author(s):  
Yannick Choy Hing Ng ◽  
William Danovan ◽  
Taeseo Ku

Seismic cross-hole tomography has been commonly used in oil and gas exploration and the mining industry for the detection of precious resources. For near-surface geotechnical site investigation, this geophysical method is relatively new and can be used to supplement traditional methods such as the standard penetration test, coring and sampling, thus improving the effectiveness of site characterization. This paper presents a case study which was carried out on a reclaimed land in the Eastern region of Singapore. A seismic cross-hole test was performed by generating both compressional waves and shear waves into the ground. The signals were interpreted by using first-arrival travel time wave tomography and the arrival times were subsequently inverted using Simultaneous Iterative Reconstruction Technique (SIRT). A comparison with the borehole logging data indicated that P-wave velocity model cannot provide sufficient information about the soil layers, especially when the ground water table is near the surface. The S-wave velocity model seemed to agree quite well with the variation in the SPT-N value and could identify to a certain extent the interface between the different soil layers. Finally, P-wave and S-wave velocities are used to compute the Poisson's ratio distribution which gave a good indication of the degree of saturation of the soil.


Geophysics ◽  
1990 ◽  
Vol 55 (4) ◽  
pp. 470-479 ◽  
Author(s):  
D. F. Winterstein ◽  
B. N. P. Paulsson

Crosshole and vertical seismic profile (VST) data made possible accurate characterization of the elastic properties, including noticeable velocity anisotropy, of a near‐surface late Tertiary shale formation. Shear‐wave splitting was obvious in both crosshole and VSP data. In crosshole data, two orthologonally polarrized shear (S) waves arrived 19 ms in the uppermost 246 ft (75 m). Vertically traveling S waves of the VSP separated about 10 ms in the uppermost 300 ft (90 m) but remained at nearly constant separation below that level. A transversely isotropic model, which incorporates a rapid increase in S-wave velocities with depth but slow increase in P-wave velocities, closely fits the data over most of the measured interval. Elastic constants of the transvesely isotropic model show spherical P- and [Formula: see text]wave velocity surfaces but an ellipsoidal [Formula: see text]wave surface with a ratio of major to minor axes of 1.15. The magnitude of this S-wave anisotropy is consistent with and lends credence to S-wave anisotropy magnitudes deduced less directly from data of many sedimentary basins.


Sign in / Sign up

Export Citation Format

Share Document