Digital processing of regional network data

1982 ◽  
Vol 72 (6B) ◽  
pp. S261-S276
Author(s):  
Robert B. Herrmann

abstract Much more than hypocenter location can be done with digital time histories obtained from regional seismic networks. Examples are given of how these data can be routinely processed to provide readily accessible intermediate results for subsequent studies, among which are velocity inversion using teleseismic P residuals, composite focal mechanism studies, and spectral analysis. The processing must be designed to be as routine and as complete as possible. Only with these two objectives achieved can the seismic networks be as productive as they should be.

1971 ◽  
Vol 61 (5) ◽  
pp. 1413-1432 ◽  
Author(s):  
Frank J. Gumper ◽  
Christopher Scholz

abstract Microseismicity, composite focal-mechanism solutions, and previously-published focal parameter data are used to determine the current tectonic activity of the prominent zone of seismicity in western Nevada and eastern California, termed the Nevada Seismic Zone. The microseismicity substantially agrees with the historic seismicity and delineates a narrow, major zone of activity that extends from Owens Valley, California, north past Dixie Valley, Nevada. Focal parameters indicate that a regional pattern of NW-SE tension exists for the western Basin and Range and is now producing crustal extension within the Nevada Seismic Zone. An eastward shift of the seismic zone along the Excelsior Mountains and left-lateral strike-slip faulting determined from a composite focal mechanism indicate transform-type faulting between Mono Lake and Pilot Mountain. Based on these results and other data, it is suggested that the Nevada Seismic Zone is caused by the interaction of a westward flow of mantle material beneath the Basin and Range Province with the boundary of the Sierra Nevada batholith.


2021 ◽  
Author(s):  
Alberto Armigliato ◽  
Martina Zanetti ◽  
Stefano Tinti ◽  
Filippo Zaniboni ◽  
Glauco Gallotti ◽  
...  

<p>It is well known that for earthquake-generated tsunamis impacting near-field coastlines the focal mechanism, the position of the fault with respect to the coastline and the on fault slip distribution are key factors in determining the efficiency of the generation process and the distribution of the maximum run-up and inundation along the nearby coasts. The time needed to obtain the aforementioned information from the analysis of seismic records is usually too long compared to the time required to issue a timely tsunami warning/alert to the nearest coastlines. In the context of tsunami early warning systems, a big challenge is hence to be able to define 1) the relative position of the hypocenter and of the fault and 2) the earthquake focal mechanism, based only on the preliminary earthquake localization and magnitude estimation, which are made available by seismic networks soon after the earthquake occurs.</p><p>In this study, the intrinsic unpredictability of the position of the hypocenter on the fault plane is studied through a probabilistic approach based on the analysis of two finite fault model datasets (SRCMOD and USGS) and by limiting the analysis to moderate-to-large shallow earthquakes (Mw  6 and depth  50 km). After a proper homogenization procedure needed to define a common geometry for all samples in the two datasets, the hypocentral positions are fitted with different probability density functions (PDFs) separately in the along-dip and along-strike directions.</p><p>Regarding the focal mechanism determination, different approaches have been tested: the most successful is restricted to subduction-type earthquakes. It defines average values and uncertainties for strike, dip and rake angles based on a combination of a proper zonation of the main tsunamigenic subduction areas worldwide and of subduction zone geometries available from publicdatabases.</p><p>The general workflow that we propose can be schematically outlined as follows. Once an earthquake occurs and the magnitude and hypocentral solutions are made available by seismic networks, it is possible to assign the focal mechanism by selecting the characteristic values for strike, dip and rake of the zone where the hypocenter falls into. Fault length and width, as well as the slip distribution on the fault plane, are computed through regression laws against magnitude proposed by previous studies. The resulting rectangular fault plane can be discretized into a matrix of subfaults: the position of the center of each subfault can be considered as a “realization” of the hypocenter position, which can then be assigned a probability. In this way, we can define a number of earthquake fault scenarios, each of which is assigned a probability, and we can run tsunami numerical simulations for each scenario to quantify the classical observables, such as water elevation time series in selected offshore/coastal tide-gauges, flow depth, run-up, inundation distance. The final results can be provided as probabilistic distributions of the different observables.</p><p>The general approach, which is still in a proof-of-concept stage, is applied to the 16 September 2015 Illapel (Chile) tsunamigenic earthquake (Mw = 8.2). The comparison with the available tsunami observations is discussed with special attention devoted to the early-warning perspective.</p>


1979 ◽  
Vol 69 (2) ◽  
pp. 427-444
Author(s):  
C. J. Langer ◽  
G. A. Bollinger

abstract Aftershocks of the February 4, 1976 Guatemalan earthquake (Ms = 7.5) were monitored by a network of portable seismographs from February 9 to February 27. Although seismic data were obtained all along the 230-km surface rupture of the causal Motagua fault, the field program was designed to concentrate on the aftershock activity at the western terminus of the fault. Data from that locale revealed several linear or near-linear trends of aftershock epicenters that splay to the southwest away from the western end of the main fault. These trends correlate spatially with mapped surface lineaments and, to some degree, with ground breakage patterns near Guatemala City. The observed splay pattern of aftershocks and the normal-faulting mode of the splay earthquakes determined from composite focal mechanism solutions, may be explained by a theoretical pattern of stress trajectories at the terminus of a strike-slip fault. Composite focal mechanism solutions for aftershocks located on or near the surface break of the Motagua fault, to the north and east of the linear trend splay area, agree with the mapped surface movements, i.e., left-lateral strike-slip.


1976 ◽  
Vol 66 (6) ◽  
pp. 1921-1929 ◽  
Author(s):  
Tracy L. Johnson ◽  
Juan Madrid ◽  
Theodore Koczynski

abstract Five microearthquake instruments were operated for 2 months in 1974 in a small mobile array deployed at various sites near the Agua Blanca and San Miguel faults. An 80-km-long dection of the San Miguel fault zone is presently active seismically, producing the vast majority of recorded earthquakes. Very low activity was recorded on the Agua Blanca fault. Events were also located near normal faults forming the eastern edge of the Sierra Juarez suggesting that these faults are active. Hypocenters on the San Miguel fault range in depth from 0 to 20 km although two-thirds are in the upper 10 km. A composite focal mechanism showing a mixture of right-lateral and dip slip, east side up, is similar to a solution obtained for the 1956 San Miguel earthquake which proved consistent with observed surface deformation.


1975 ◽  
Vol 65 (4) ◽  
pp. 855-864
Author(s):  
Stephen D. Malone ◽  
George H. Rothe ◽  
Stewart W. Smith

Abstract Three microearthquake swarms in the Columbia River basin of eastern Washington have been studied by means of a small portable seismic network. Earthquakes in this area typically occur in swarms, concentrated both temporally and spatially. One unusual characteristic of the three swarms studied was the shallow focal depths of all events. Most events located had depths less than 1 km; none were deeper than 2 km. Composite focal mechanism solutions indicate that more than one fault surface is active in any one swarm. All events had some thrust component with the axis of maximum compression oriented roughly in a north-south direction.


1978 ◽  
Vol 68 (4) ◽  
pp. 1095-1102 ◽  
Author(s):  
Robert B. Herrmann ◽  
Jose-Antonio Canas

abstract A recent study of seismicity in the New Madrid seismic zone by Stauder et al. (1976) has shown the existence of linear micro-earthquake patterns of up to 120 km in length. This study presents the results of composite microearthquake focal mechanism studies along these trends together with focal mechanisms obtained using long-period surface-wave data from larger events. Due to the present microearthquake array geometry, the composite focal mechanism studies do not indicate a complete picture of the nature of the earthquake processes for all the trends. However, the motion on the major 120-km long trend into northeastern Arkansas has significant components of right lateral fault motion. The consistency of surface-wave focal mechanisms and the composite focal mechanism along this trend indicates that it should be considered as a single tectonic unit.


2021 ◽  
Vol 18 (2) ◽  
pp. 239-252
Author(s):  
Shu-zhong Sheng ◽  
Yong-ge Wan ◽  
Chang-sheng Jiang ◽  
Xiao-shan Wang ◽  
Shan-shan Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document