The collection, digital processing, and spectral analysis of mobile radio-fading signals, and a theoretical model for fading due to building reflections

1963 ◽  
Vol 51 (3) ◽  
pp. 509-509
Author(s):  
J.F. Ossanna
1982 ◽  
Vol 72 (6B) ◽  
pp. S261-S276
Author(s):  
Robert B. Herrmann

abstract Much more than hypocenter location can be done with digital time histories obtained from regional seismic networks. Examples are given of how these data can be routinely processed to provide readily accessible intermediate results for subsequent studies, among which are velocity inversion using teleseismic P residuals, composite focal mechanism studies, and spectral analysis. The processing must be designed to be as routine and as complete as possible. Only with these two objectives achieved can the seismic networks be as productive as they should be.


2021 ◽  
pp. 69-74
Author(s):  
Олександр Дмитрович Абрамов ◽  
Юлія Володимирівна С’єдіна ◽  
Андрій Юрійович Ніколаєв ◽  
Артем Андрійович Бондарєв

The article deals with the technology of estimating the frequency of harmonic components in the presence of additive normal interferences for solving applied problems of spectral analysis. Objective: to develop a methodology for the synthesis of algorithms for determining the frequency of a complex harmonic signal in discrete sections of the process, this is observed when using data segmentation. Objective: to develop the optimal technology for determining the frequency of the hormonal component of the process, provided by a finite number of discrete compartments, according to model representations and requirements that meet the problems of the current state of spectral analysis practice. These results were obtained. The problem of estimating the harmonic frequency from segmented data in the presence of additive Gaussian interference in observations based on the method of maximum likelihood is solved. The processing algorithm and the consequences of digital modeling of the synthesized evaluation technology for a given number of discrete process samples are given. The analysis of both the practical capacity of the technology for determining the assessment and certain qualitative indicators of assessment is performed. Conclusions. The scientific novelty of the obtained results is as follows: further development as a method for solving problems of estimating the frequency of the harmonic signal from a few sample values of the process under conditions of additive normal interference and methods for optimizing the structure of digital processing of observations in data segmentation. The synthesized technology uses one sample of observations to determine the estimates, which ensure the efficiency of information processing in a simple software implementation. The use of segmentation in the technological process of digital processing of observations allows obtaining estimates, the quality of which corresponds to the indicators of maximum likelihood. For unambiguous assessment, there is a need to eliminate ambiguity. Under these conditions, the technology with a given number of samples can significantly solve the range of signal-to-noise ratios at which can be obtained unbiased estimates.


Author(s):  
L. Montoto ◽  
M. Montoto ◽  
A. Bel-Lan

INTRODUCTION.- The physical properties of rock masses are greatly influenced by their internal discontinuities, like pores and fissures. So, these need to be measured as a basis for interpretation. To avoid the basic difficulties of measurement under optical microscopy and analogic image systems, the authors use S.E.M. and multiband digital image processing. In S.E.M., analog signal processing has been used to further image enhancement (1), but automatic information extraction can be achieved by simple digital processing of S.E.M. images (2). The use of multiband image would overcome difficulties such as artifacts introduced by the relative positions of sample and detector or the typicals encountered in optical microscopy.DIGITAL IMAGE PROCESSING.- The studied rock specimens were in the form of flat deformation-free surfaces observed under a Phillips SEM model 500. The SEM detector output signal was recorded in picture form in b&w negatives and digitized using a Perkin Elmer 1010 MP flat microdensitometer.


Author(s):  
A. V. Crewe ◽  
M. Ohtsuki

We have assembled an image processing system for use with our high resolution STEM for the particular purpose of working with low dose images of biological specimens. The system is quite flexible, however, and can be used for a wide variety of images.The original images are stored on magnetic tape at the microscope using the digitized signals from the detectors. For low dose imaging, these are “first scan” exposures using an automatic montage system. One Nova minicomputer and one tape drive are dedicated to this task.The principal component of the image analysis system is a Lexidata 3400 frame store memory. This memory is arranged in a 640 x 512 x 16 bit configuration. Images are displayed simultaneously on two high resolution monitors, one color and one black and white. Interaction with the memory is obtained using a Nova 4 (32K) computer and a trackball and switch unit provided by Lexidata.The language used is BASIC and uses a variety of assembly language Calls, some provided by Lexidata, but the majority written by students (D. Kopf and N. Townes).


Author(s):  
E. Wisse ◽  
A. Geerts ◽  
R.B. De Zanger

The slowscan and TV signal of the Philips SEM 505 and the signal of a TV camera attached to a Leitz fluorescent microscope, were digitized by the data acquisition processor of a Masscomp 5520S computer, which is based on a 16.7 MHz 68020 CPU with 10 Mb RAM memory, a graphics processor with two frame buffers for images with 8 bit / 256 grey values, a high definition (HD) monitor (910 × 1150), two hard disks (70 and 663 Mb) and a 60 Mb tape drive. The system is equipped with Imaging Technology video digitizing boards: analog I/O, an ALU, and two memory mapped frame buffers for TV images of the IP 512 series. The Masscomp computer has an ethernet connection to other computers, such as a Vax PDP 11/785, and a Sun 368i with a 327 Mb hard disk and a SCSI interface to an Exabyte 2.3 Gb helical scan tape drive. The operating system for these computers is based on different versions of Unix, such as RTU 4.1 (including NFS) on the acquisition computer, bsd 4.3 for the Vax, and Sun OS 4.0.1 for the Sun (with NFS).


Author(s):  
W.J. de Ruijter ◽  
Peter Rez ◽  
David J. Smith

Digital computers are becoming widely recognized as standard accessories for electron microscopy. Due to instrumental innovations the emphasis in digital processing is shifting from off-line manipulation of electron micrographs to on-line image acquisition, analysis and microscope control. An on-line computer leads to better utilization of the instrument and, moreover, the flexibility of software control creates the possibility of a wide range of novel experiments, for example, based on temporal and spatially resolved acquisition of images or microdiffraction patterns. The instrumental resolution in electron microscopy is often restricted by a combination of specimen movement, radiation damage and improper microscope adjustment (where the settings of focus, objective lens stigmatism and especially beam alignment are most critical). We are investigating the possibility of proper microscope alignment based on computer induced tilt of the electron beam. Image details corresponding to specimen spacings larger than ∼20Å are produced mainly through amplitude contrast; an analysis based on geometric optics indicates that beam tilt causes a simple image displacement. Higher resolution detail is characterized by wave propagation through the optical system of the microscope and we find that beam tilt results in a dispersive image displacement, i.e. the displacement varies with spacing. This approach is valid for weak phase objects (such as amorphous thin films), where transfer is simply described by a linear filter (phase contrast transfer function) and for crystalline materials, where imaging is described in terms of dynamical scattering and non-linear imaging theory. In both cases beam tilt introduces image artefacts.


Sign in / Sign up

Export Citation Format

Share Document