An experiment in the retrieval of depth and source mechanism of large earthquakes using very long-period Rayleigh wave data

1984 ◽  
Vol 74 (2) ◽  
pp. 417-437
Author(s):  
Barbara Romanowicz ◽  
Philippe Guillemant

Abstract The possibility of obtaining an estimate of depth for large earthquakes from low-frequency mantle wave data alone is investigated using moment tensor formalism. After illustrating the sensitivity to depth of the eigenfunctions in the period range of 160 to 350 sec, we give several examples of application of the two-step inversion procedure proposed earlier for shorter period Rayleigh wave data (Romanowicz, 1982). We find that for earthquakes below a depth of about 50 km, we are able to resolve depth even when a spherically symmetric average Earth model is used for propagation corrections. This is particularly interesting in the case of large subduction zone earthquakes for which an estimate of the vertical extent of faulting can thus be obtained, independently of aftershock studies, in a very fast and simple manner which does not involve any synthetic seismogram calculations or lateral heterogeneity modeling. For shallower earthquakes, especially those with one steeply dipping nodal plane, the resolution of depth is less precise. Taking lateral heterogeneity into account by using available regionalized phase velocities improves the results marginally. We anticipate that accounting more accurately for the low-order harmonics in the worldwide phase velocity distribution should prove most helpful, since these interfere the most with the theoretical radiation patterns of earthquakes. The determination of depth depends more critically on the source process time, which has to be accounted for especially for horizontally propagating faults.

1994 ◽  
Vol 84 (3) ◽  
pp. 751-760
Author(s):  
Tatsuhiko Hara ◽  
Robert J. Geller

Abstract The epicenter of the Landers, California, earthquake (28 June 1992; MW = 7.3) was located near the TERRAscope network of broadband seismic stations. The direct Rayleigh wave arrivals, R1, were clipped, and the first two later arrivals, R2 and R3, were contaminated by the waves from a large aftershock, but, as reported by Kanamori et al. (1992a), the amplitudes of R4 and later great circle Rayleigh wave arrivals (fundamental mode spheroidal free oscillations) are about 10 times larger than predicted by synthetic seismograms for a spherically symmetric earth model. We show that, for the moment tensor of the Landers event (predominantly vertical strike slip), the amplitudes of synthetics at the TERRAscope stations for a laterally heterogeneous, rotating, elliptical model are about 10 times greater than those for a spherically symmetric model. Because the anomaly ratio is sensitive to both the source model and the three-dimensional (3D) earth model, we do not attempt to reproduce the exact anomaly ratios recorded by the various stations. To explain the existence of near-field amplitude anomalies in general, we use the first-order Born approximation to find the perturbation to the synthetic seismogram resulting from lateral heterogeneity, ellipticity, and the earth's rotation. In a coordinate system with the source on the z axis a point-source strike-slip earthquake on a vertical fault plane in a spherically symmetric medium excites Rayleigh waves with azimuthal order ±2 only; these waves have a near-field vertical displacement of zero at the source; the displacement increases with the square of epicentral distance for any given azimuth. Coupling as a result of asphericity allows such a source to excite Rayleigh waves with azimuthal order zero, whose near-field amplitude is independent of epicentral distance, thereby generating large near-field amplitude anomalies. We conduct numerical experiments to study the influence of various parameters on near-field amplitude anomalies.


Author(s):  
Qingling Du ◽  
Zhengping Liu ◽  
Shijie Liu ◽  
Li Zhang ◽  
Wenfu Yu

Summary We examine the potential of frequency-dependent Rayleigh wave ellipticity, derived from microtremors, for the investigation of heterogeneous subsurface structure. Based on numerical simulation, we analyze the effects of interference waves in microtremors, primarily the various propagation directions of the Rayleigh waves, linear polarization waves, and white noise, on the ellipticity frequency-dependent estimation of the Rayleigh waves. A data processing scheme to separate the Rayleigh waves from the interference waves is proposed and verified by synthetic data. We performed a field experiment in the mountainous areas of Southwest China to show that the ellipticity frequency-dependency of Rayleigh waves in the period range of 0.05 to 5 s can be estimated from the microtremor records with the proposed data processing scheme. In addition, the method is feasible for investigating lateral heterogeneity within the top several hundred meters in the mountain regions. The study also reveals that the features of the ellipticity anomaly of a local heterogeneity are related to the propagation directions of the Rayleigh waves, and to reduce the ambiguity of the anomaly, the propagation direction of the waves picked for the ellipticity estimation should be consistent with (along or opposite to) that of the survey line. Then, to eliminate the effects of the phase differences due to the propagation direction, or time, the ellipticity for each location should be estimated by a single event rather than multiple events from the derived Rayleigh wave arrivals.


1982 ◽  
Vol 72 (6A) ◽  
pp. 2063-2080
Author(s):  
Ichiro Nakanishi ◽  
Hiroo Kanamori

abstract Spectra of mantle Rayleigh waves recorded on the IDA network are inverted to determine the seismic moment tensor of the 9 June 1980 California-Mexico Border earthquake, the 29 July 1980 Vanuatu Islands earthquake, and the 9 July 1980 Santa Cruz Islands earthquake. Examinations are made to correct for phase velocity lateral heterogeneity and source process time. A simple regionalization (stable continent, tectonic region, young ocean, and old ocean) improves results of the linear inversion, but the phase correction is not large enough, and the discontinuous change of phase velocity across the boundary between regions causes an artificial rapid change in apparent phase velocity as a function of azimuth. Therefore, a more detailed but gradual representation of the lateral heterogeneity is desirable to correct for the propagation effect in the linear inversion. A source process time which consists of the nondirectional part of the apparent duration of main faulting and the delay time of the faulting from initial break is estimated by a phase analysis of Rayleigh waves. The source process time is generally proportional to the seismic moment on the log-log scale, but some earthquakes deviate considerably from the general relation. Therefore, the measurement of the source process time should be made before the moment tensor inversion. The phase errors introduced by the lateral heterogeneity and source process time may cause a bias to low scalar moment.


2007 ◽  
Vol 7 (5) ◽  
pp. 625-628 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
O. Molchanov ◽  
P.-F. Biagi ◽  
M. Hayakawa

Abstract. We analyze variations of the LF subionospheric signal amplitude and phase from JJY transmitter in Japan (F=40 kHz) received in Petropavlovsk-Kamchatsky station during seismically quiet and active periods including also periods of magnetic storms. After 20 s averaging, the frequency range of the analysis is 0.28–15 mHz that corresponds to the period range from 1 to 60 min. Changes in spectra of the LF signal perturbations are found several days before and after three large earthquakes, which happened in November 2004 (M=7.1), August 2005 (M=7.2) and November 2006 (M=8.2) inside the Fresnel zone of the Japan-Kamchatka wavepath. Comparing the perturbed and background spectra we have found the evident increase in spectral range 10–25 min that is in the compliance with theoretical estimations on lithosphere-ionosphere coupling by the Atmospheric Gravity Waves (T>6 min). Similar changes are not found for the periods of magnetic storms.


2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


1977 ◽  
Vol 67 (3) ◽  
pp. 751-769
Author(s):  
Nazieh K. Yacoub ◽  
Brian J. Mitchell

abstract Surface waves generated by six earthquakes and two nuclear explosions are used to study the attenuation coefficients of the fundamental Rayleigh mode across Eurasia. Rayleigh-wave amplitude data yield average attenuation coefficients at periods between 4 and 50 sec. The data exhibit relatively large standard deviations and in some cases the average attenuation coefficients take on negative values which may be due to regional variations of the attenuative properties of the crust, lateral refraction, multipathing and scattering. A method has been developed to investigate the regional variation in the attenuative properties of the Eurasian crust and its effect on surface-wave amplitude data, employing the evaluated average attenuation coefficients for the fundamental Rayleigh mode. For this investigation, Eurasia is divided into two regions, one considered to be relatively stable, and the other considered to be tectonic in nature. This regionalization shows that the tectonic regions exhibit higher attenuation than the stable regions in the period range below about 20 sec, whereas in the period range above about 20 sec, no clear difference can be observed for the two regions. Although the effects of lateral refraction and multipathing may still significantly affect the observations, the regionalization lowers the standard deviations considerably and eliminates the negative values which were obtained in the unregionalized determinations.


1989 ◽  
Vol 79 (4) ◽  
pp. 1177-1193
Author(s):  
Jacques Talandier ◽  
Emile A. Okal

Abstract We have developed a new magnitude scale, Mm, based on the measurement of mantle Rayleigh-wave energy in the 50 to 300 sec period range, and directly related to the seismic moment through Mm = log10M0 − 20. Measurements are taken on the first passage of Rayleigh waves, recorded on-scale on broadband instruments with adequate dynamical range. This allows estimation of the moment of an event within minutes of the arrival of the Rayleigh wave, and with a standard deviation of ±0.2 magnitude units. In turn, the knowledge of the seismic moment allows computation of an estimate of the high-seas amplitude of a range of expectable tsunami heights. The latter, combined with complementary data from T-wave duration and historical references, have been integrated into an automated procedure of tsunami warning by the Centre Polynésien de Prévention des Tsunamis (CPPT), in Papeete, Tahiti.


1982 ◽  
Vol 72 (4) ◽  
pp. 1329-1349
Author(s):  
H. J. Patton

abstract Single-station measurements of Rayleigh-wave phase velocity are obtained for paths between the Nevada Test Site and the Livermore broadband regional stations. Nuclear underground explosions detonated in Yucca Valley were the sources of the Rayleigh waves. The source phase φs required by the single-station method is calculated for an explosion source by assuming a spherically symmetric point source with step-function time dependence. The phase velocities are used to analyze the Rayleigh waves of the Massachusetts Mountain earthquake of 5 August 1971. Measured values of source phase for this earthquake are consistent with the focal mechanism determined from P-wave first-motion data (Fischer et al., 1972). A moment-tensor inversion of the Rayleigh-wave spectra for a 3-km-deep source gives a horizontal, least-compressive stress axis oriented N63°W and a seismic moment of 5.5 × 1022 dyne-cm. The general agreement between the results of the P-wave study of Fischer et al. (1972) and this study supports the measurements of phase velocities and, in turn, the explosion source model used to calculate φs.


2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Paola Cusano ◽  
Simona Petrosino ◽  
Francesca Bianco ◽  
Edoardo Del Pezzo

<p>The typical earthquakes occurring at Mt. Vesuvius are Volcano-Tectonic. On July 20, 2003, an unusual earthquake with low and narrow frequency content was detected. The seismograms presented an emergent onset and a nearly monochromatic spectrum at all stations of the Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia) seismic network. The event was located at about 4 km b.s.l. close to the crater axis and an equivalent duration magnitude of 0.6 was estimated. The nature of this event was investigated by comparing its features with those of two typical Volcano-Tectonic earthquakes occurred inside the same source volume. We compared the spectral content calculating the spectrograms and the coda patterns using the Hilbert Transform. A Seismic Moment Tensor inversion was performed on the low frequency earthquake. The focal mechanisms for the two Volcano-Tectonic earthquakes were estimated with a classical technique and resulted compatible with the stress field acting on the volcano. Taking into account the clear differences with the typical Volcano-Tectonic events as well as the peculiarities retrieved from our analyses (monochromatic, low frequency spectral content, and sustained coda) and also some geochemical observations, we classify the unusual low frequency seismic event detected at Mt. Vesuvius as Long Period earthquake and propose that its origin could be linked to a pressure drop in the deep hydrothermal system.</p>


Sign in / Sign up

Export Citation Format

Share Document