Seismic response of a hill: The example of Tarzana, California

1996 ◽  
Vol 86 (1A) ◽  
pp. 66-72 ◽  
Author(s):  
Michel Bouchon ◽  
Jeffrey S. Barker

Abstract The Northridge, California, earthquake that strongly shook the city of Los Angeles in January 1994, produced one of the highest ground accelerations ever recorded in an earthquake, at a site located on top of a small hill in Tarzana, about 6 km south of the epicenter. The subsequent study of aftershock recordings obtained by a dense seismic array deployed on the hill a few days after the earthquake showed the existence of a strong amplification at stations located at the top of the hill, relative to stations near the base (Spudich et al., 1996). Resonances and polarization rotations were also observed. We investigate in this study the role that the topography of the site played on the observed ground motions and accelerations. To this aim, we perform numerical simulations and study the response of the three-dimensional topography of the site to incident shear waves polarized in different directions. The method used is a boundary integral equation scheme in which the Green's functions are calculated by the discrete wavenumber method. The results obtained show that the topography of the site, though quite gentle (the hill is less than 20-m high), strongly affects the ground motions in the frequency range between 2 and 15 Hz. Many of the observed characteristics of the seismic response at Tarzana are explained in part by its topography: the consistent amplification of ground motion at and near the top of the hill, the directional seismic response of the hill that results in a strong amplification of the ground motion transverse to the direction of elongation of the hill, the existence of a fundamental transverse oscillatory resonance mode of the hill at 3 to 5 Hz, the rotation of the polarization of ground motion, and the spatial variation of amplification over the hill at the fundamental resonance mode. The seismic response of the topography, however, does not fully explain the amplitude of the effects observed. The three-dimensional geological structure of the site must in some way amplify the effect of the topography to produce the observed seismic response. In spite of not being as strong as the observed effect, the topographic effect of the site is considerable. The ground motion is amplified by factors ranging from 30% to 100% at some locations in the frequency range from 2 to 15 Hz. Rapid spatial variations of ground-shaking intensities can take place over distance scales of a few tens of meters at high frequency. Finally, the results of the simulation indicate that the topography of the site amplified the large east-west accelerations recorded there during the Northridge mainshock by 30% to 40%.

2011 ◽  
Vol 90-93 ◽  
pp. 1220-1223
Author(s):  
Chun Hui Zhang ◽  
Xing Jun Qi ◽  
Qi Hui Chen

In this article, an inclined leg bridge is taken as the research object. The three-dimensional finite element model is established, and soil spring is used to simulate soil-pile interaction. The dynamic characteristics of the two models are calculated. Two different ground motions are selected to analyze seismic response of the bridge. The dynamic characteristics and seismic response of bridge are compared in the conditions whether considering soil-pile interaction. The results show that the stress and displacement under qian’an ground motion action is bigger than that under Elcentro ground motion because the two ground motions have different frequency characteristics .After considering soil-pile interaction, the natural frequencies of inclined leg bridge decrease, and the longitudinal displacement of bridge increases obviously, at the same time the stress in the top and bottom of inclined leg increase obviously and the stress among main girder is not obviously increased. Soil-pile interaction maybe cause some adverse effect for inclined leg rigid frame bridge.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2021 ◽  
pp. 875529302110039
Author(s):  
Filippos Filippitzis ◽  
Monica D Kohler ◽  
Thomas H Heaton ◽  
Robert W Graves ◽  
Robert W Clayton ◽  
...  

We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of periods of engineering significance (1, 3, 6, and 8 s). Significant ground-motion amplification is present and reproducible between the two events. For the longer periods, coherent spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter periods, the motions are less spatially coherent. However, coherence is still observable at smaller length scales due to the high spatial density of the measurements. Examining possible correlations of the computed response spectral accelerations with basement depth and Vs30, we find the correlations to be stronger for the longer periods. In the second part of the study, we test the performance of two state-of-the-art methods for estimating ground motions for the largest event of the Ridgecrest earthquake sequence, namely three-dimensional (3D) finite-difference simulations and ground motion prediction equations. For the simulations, we are interested in the performance of the two Southern California Earthquake Center 3D community velocity models (CVM-S and CVM-H). For the ground motion prediction equations, we consider four of the 2014 Next Generation Attenuation-West2 Project equations. For some cases, the methods match the observations reasonably well; however, neither approach is able to reproduce the specific locations of the maximum response spectral accelerations or match the details of the observed amplification patterns.


2021 ◽  
Author(s):  
Aybige Akinci ◽  
Daniele Cheloni ◽  
AHMET ANIL DINDAR

Abstract On 30 October 2020 a MW 7.0 earthquake occurred in the eastern Aegean Sea, between the Greek island of Samos and Turkey’s Aegean coast, causing considerable seismic damage and deaths, especially in the Turkish city of Izmir, approximately 70 km from the epicenter. In this study, we provide a detailed description of the Samos earthquake, starting from the fault rupture to the ground motion characteristics. We first use Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data to constrain the source mechanisms. Then, we utilize this information to analyze the ground motion characteristics of the mainshock in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and spectral pseudo-accelerations. Modelling of geodetic data shows that the Samos earthquake ruptured a NNE-dipping normal fault located offshore north of Samos, with up to 2.5-3 m of slip and an estimated geodetic moment of 3.3 ⨯ 1019 Nm (MW 7.0). Although low PGA were induced by the earthquake, the ground shaking was strongly amplified in Izmir throughout the alluvial sediments. Structural damage observed in Izmir reveals the potential of seismic risk due to the local site effects. To better understand the earthquake characteristics, we generated and compared stochastic strong ground motions with the observed ground motion parameters as well as the ground motion prediction equations (GMPEs), exploring also the efficacy of the region-specific parameters which may be improved to better predict the expected ground shaking from future large earthquakes in the region.


2019 ◽  
Vol 35 (3) ◽  
pp. 1311-1328 ◽  
Author(s):  
Ganyu Teng ◽  
Jack Baker

This paper evaluates CyberShake (version 15.12) ground motions for potential application to high-rise building design in the Los Angeles region by comparing them against recordings from past earthquakes as well as empirical models. We consider two selected sites in the Los Angeles region with different underlying soil conditions and select comparable suites of ground motion records from CyberShake and the NGA-West2 database according to the ASCE 7-16 requirements. Major observations include (1) selected ground motions from CyberShake and NGA-West2 share similar features, in terms of response spectra and polarization; (2) when selecting records from Cyber-Shake, it is easy to select motions with sources that match the hazard deaggregation; (3) CyberShake durations on soil are consistent with the empirical models considered, whereas durations on rock are slightly shorter; (4) occasional excessive polarization in ground motion is produced by San Andreas fault ruptures, though those records are usually excluded after the ground motion selection. Results from this study suggest that CyberShake ground motions are a suitable and promising source of ground motions for engineering evaluations.


2020 ◽  
Vol 36 (3) ◽  
pp. 1485-1516
Author(s):  
Jui-Liang Lin ◽  
Wen-Hui Chen ◽  
Fu-Pei Hsiao ◽  
Yuan-Tao Weng ◽  
Wen-Cheng Shen ◽  
...  

A shaking table test of a three-story reinforced concrete (RC) building was conducted. The tested building is vertically irregular because of the first story’s elevated height and the third story’s added RC walls. In addition to far-field ground motions, near-fault ground motions were exerted on this building. A numerical model of the three-story building was constructed. Comparing with the test results indicates that the numerical model is satisfactory for simulating the seismic response of the three-story building. This validated numerical model was then further applied to look into two issues: the effective section rigidities of RC members and the effects of near-fault ground motions. The study results show the magnitude of the possible discrepancy between the actual seismic response and the estimated seismic response, when the effective section rigidities of the RC members are treated as in common practice. An incremental dynamic analysis of the three-story RC building subjected to one far-field and one near-fault ground motion, denoted as CHY047 and TCU052, respectively, was conducted. In comparison with the far-field ground motion, the near-fault ground motion is more destructive to this building. In addition, the effect of the selected near-fault ground motion (i.e. TCU052) on the building’s collapse is clearly identified.


2019 ◽  
Vol 109 (5) ◽  
pp. 1812-1828 ◽  
Author(s):  
Nenad Bijelić ◽  
Ting Lin ◽  
Gregory G. Deierlein

Abstract Limited data on strong earthquakes and their effect on structures pose challenges of making reliable risk assessments of tall buildings. For instance, although the collapse safety of tall buildings is likely controlled by large‐magnitude earthquakes with long durations and high low‐frequency content, there are few available recorded ground motions to evaluate these issues. The influence of geologic basins on amplifying ground‐motion effects raises additional questions. Absent recorded motions from past large magnitude earthquakes, physics‐based ground‐motion simulations provide a viable alternative. This article examines collapse risk and drift demands of a 20‐story archetype tall building using ground motions at four sites in the Los Angeles (LA) basin. Seismic demands of the building are calculated form nonlinear structural analyses using large datasets (∼500,000 ground motions per site) of unscaled, site‐specific simulated seismograms. Seismic hazard and building performance from direct analysis of Southern California Earthquake Center CyberShake motions are contrasted with values obtained based on conventional approaches that rely on recorded motions coupled with probabilistic seismic hazard assessments. At the LA downtown site, the two approaches yield similar estimates of mean annual frequency of collapse (λc), whereas nonlinear drift demands estimated with direct analysis are slightly larger primarily because of differences in hazard curves. Conversely, at the deep basin site, the CyberShake‐based analysis yields around seven times larger λc than the conventional approach, and both hazard and spectral shapes of the motions drive the differences. Deaggregation of collapse risk is used to identify the relative contributions of causal earthquakes, linking building responses with specific seismograms and contrasting collapse risk with hazard. A strong discriminative power of average spectral acceleration and significant duration for predicting collapse is observed.


2020 ◽  
Vol 110 (4) ◽  
pp. 1530-1548 ◽  
Author(s):  
Grace A. Parker ◽  
Annemarie S. Baltay ◽  
John Rekoske ◽  
Eric M. Thompson

ABSTRACT We use a large instrumental dataset from the 2019 Ridgecrest earthquake sequence (Rekoske et al., 2019, 2020) to examine repeatable source-, path-, and site-specific ground motions. A mixed-effects analysis is used to partition total residuals relative to the Boore et al. (2014; hereafter, BSSA14) ground-motion model. We calculate the Arias intensity stress drop for the earthquakes and find strong correlation with our event terms, indicating that they are consistent with source processes. We look for physically meaningful trends in the partitioned residuals and test the ability of BSSA14 to capture the behavior we observe in the data. We find that BSSA14 is a good match to the median observations for M>4. However, we find bias for individual events, especially those with small magnitude and hypocentral depth≥7  km, for which peak ground acceleration is underpredicted by a factor of 2.5. Although the site amplification term captures the median site response when all sites are considered together, it does not capture variations at individual stations across a range of site conditions. We find strong basin amplification in the Los Angeles, Ventura, and San Gabriel basins. We find weak amplification in the San Bernardino basin, which is contrary to simulation-based findings showing a channeling effect from an event with a north–south azimuth. This and an additional set of ground motions from earthquakes southwest of Los Angeles suggest that there is an azimuth-dependent southern California basin response related to the orientation of regional structures when ground motion from waves traveling south–north are compared with those in the east–west direction. These findings exhibit the power of large, spatially dense ground-motion datasets and make clear that nonergodic models are a way to reduce bias and uncertainty in ground-motion estimation for applications like the U.S. Geological Survey National Seismic Hazard Model and the ShakeAlert earthquake early warning System.


2020 ◽  
Author(s):  
Chun-Te Chen ◽  
Shiann-Jong Lee ◽  
Yu-Chang Chan

<p>The topography effect has been thriving investigated based on numerical modeling. It impacts the seismic ground shaking, usually amplifying the amplitude of shaking at top hills or ridges and de-amplifying at valleys. However, the correlation between the earthquake-induced landslide and the topographic amplification is relatively unexplored. To investigate the amplification of seismic response on the surface topography and the role in the Chi-Chi earthquake-induced landslide in the JiuJiu peaks area, we perform a 3D ground motion simulation in the JiuJiu peaks area of Taiwan based on the spectral element method. The Lidar-derived 20m resolution Digital Elevation Model (DEM) data was applied to build a mesh model with realistic terrain relief. To this end, in a steep topography area like the JiuJiu peaks, the designed thin buffer layers are applied to dampen the mesh distortion. The three doubling mesh layers near the surface accommodate a more excellent mesh model. Our results show the higher amplification of PGA on the tops and ridges of JiuJiu peaks than surrounding mountains, while the de-amplification mostly occurs near the valley and hillside. The relief topography could have a ±50% variation in PGA amplification for compression wave, and have much more variety in PGA amplification for shear wave, which could be in the range between -50% and +100%. We also demonstrate that the high percentages of the landslide distribution right after the large earthquake are located in the topographic amplified zone. The source frequency content interacts with the topographic feature, in general, small-scale topography amplifies the higher-frequency seismic waves. It is worthy of further investigating the interaction between the realistic topography and the velocity structure on how to impact the seismic response in the different frequency bands. We suggest that the topographic seismic amplification should be taking into account in seismic hazard assessment and landslide evaluation.</p>


Sign in / Sign up

Export Citation Format

Share Document