Surface topography effects on seismic ground motion and correlation with earthquake-induced landslide: An example of the JiuJiu peaks in 1999 Chi-Chi Taiwan earthquake

Author(s):  
Chun-Te Chen ◽  
Shiann-Jong Lee ◽  
Yu-Chang Chan

<p>The topography effect has been thriving investigated based on numerical modeling. It impacts the seismic ground shaking, usually amplifying the amplitude of shaking at top hills or ridges and de-amplifying at valleys. However, the correlation between the earthquake-induced landslide and the topographic amplification is relatively unexplored. To investigate the amplification of seismic response on the surface topography and the role in the Chi-Chi earthquake-induced landslide in the JiuJiu peaks area, we perform a 3D ground motion simulation in the JiuJiu peaks area of Taiwan based on the spectral element method. The Lidar-derived 20m resolution Digital Elevation Model (DEM) data was applied to build a mesh model with realistic terrain relief. To this end, in a steep topography area like the JiuJiu peaks, the designed thin buffer layers are applied to dampen the mesh distortion. The three doubling mesh layers near the surface accommodate a more excellent mesh model. Our results show the higher amplification of PGA on the tops and ridges of JiuJiu peaks than surrounding mountains, while the de-amplification mostly occurs near the valley and hillside. The relief topography could have a ±50% variation in PGA amplification for compression wave, and have much more variety in PGA amplification for shear wave, which could be in the range between -50% and +100%. We also demonstrate that the high percentages of the landslide distribution right after the large earthquake are located in the topographic amplified zone. The source frequency content interacts with the topographic feature, in general, small-scale topography amplifies the higher-frequency seismic waves. It is worthy of further investigating the interaction between the realistic topography and the velocity structure on how to impact the seismic response in the different frequency bands. We suggest that the topographic seismic amplification should be taking into account in seismic hazard assessment and landslide evaluation.</p>

2021 ◽  
Author(s):  
Jagdish Chandra Vyas ◽  
Martin Galis ◽  
Paul Martin Mai

<p>Geological observations show variations in fault-surface topography not only at large scale (segmentation) but also at small scale (roughness). These geometrical complexities strongly affect the stress distribution and frictional strength of the fault, and therefore control the earthquake rupture process and resulting ground-shaking. Previous studies examined fault-segmentation effects on ground-shaking, but our understanding of fault-roughness effects on seismic wavefield radiation and earthquake ground-motion is still limited.  </p><p>In this study we examine the effects of fault roughness on ground-shaking variability as a function of distance based on 3D dynamic rupture simulations. We consider linear slip-weakening friction, variations of fault-roughness parametrizations, and alternative nucleation positions (unilateral and bilateral ruptures). We use generalized finite difference method to compute synthetic waveforms (max. resolved frequency 5.75 Hz) at numerous surface sites  to carry out statistical analysis.  </p><p>Our simulations reveal that ground-motion variability from unilateral ruptures is almost independent of  distance from the fault, with comparable or higher values than estimates from ground-motion prediction equations (e.g., Boore and Atkinson, 2008; Campbell and Bozornia, 2008). However, ground-motion variability from bilateral ruptures decreases with increasing distance, in contrast to previous studies (e.g., Imtiaz et. al., 2015) who observe an increasing trend with distance. Ground-shaking variability from unilateral ruptures is higher than for bilateral ruptures, a feature due to intricate seismic radiation patterns related to fault roughness and hypocenter location. Moreover, ground-shaking variability for rougher faults is lower than for smoother faults. As fault roughness increases the difference in ground-shaking variabilities between unilateral and bilateral ruptures increases. In summary, our simulations help develop a fundamental understanding of ground-motion variability at high frequencies (~ 6 Hz) due small-scale geometrical fault-surface variations.</p>


2021 ◽  
pp. 875529302110513
Author(s):  
Eleftheria Efthymiou ◽  
Alfredo Camara

The definition of the spatial variability of the ground motion (SVGM) is a complex and multi-parametric problem. Its effect on the seismic response of cable-stayed bridges is important, yet not entirely understood to date. This work examines the effect of the SVGM on the seismic response of cable-stayed bridges by means of the time delay of the ground motion at different supports, the loss of coherency of the seismic waves, and the incidence angle of the seismic waves. The focus herein is the effect of the SVGM on cable-stayed bridges with various configurations in terms of their length and of design parameters such as the pylon shape and the pylon–cable system configuration. The aim of this article is to provide general conclusions that are applicable to a wide range of canonical cable-stayed bridges and to contribute to the ongoing effort to interpret and predict the effect of the SVGM in long structures. This work shows that the effect of the SVGM on the seismic response of cable-stayed bridges varies depending on the pylon shape, height, and section dimensions; on the cable-system configuration; and on the response quantity of interest. Furthermore, the earthquake incidence angle defines whether the SVGM is important to the seismic response of the cable-stayed bridges. It is also confirmed that the SVGM excites vibration modes of the bridges that do not contribute to their seismic response when identical support motion is considered.


Author(s):  
Hiroyuki Goto ◽  
Yoshihiro Kaneko ◽  
Muriel Naguit ◽  
John Young

ABSTRACT Ground-motion records are critical for seismic hazard assessment and seismic design of buildings and infrastructures. Large (>1g), asymmetric vertical accelerations (AsVAs) have been observed at strong-motion stations during recent earthquakes. However, it is not clear whether all of the observed AsVAs reflect actual ground shaking or the interaction of a building structure and underlying ground. Here, we investigate the cause of large AsVAs recorded at several seismic stations in Christchurch, New Zealand, during the 2011 Mw 6.2 Christchurch earthquake. We first define three metrics and quantify the degree of waveform asymmetry in all available records from nearby M>3 earthquakes. Histograms of the metrics show greater waveform asymmetry for larger accelerations at these stations, which is consistent with the prediction of a nonlinear, soil–structure interaction associated with the elastic collisions of a foundation slab onto the underlying soil. We then use finite-element models to examine the occurrence of the nonlinear, soil–structure interaction at these stations during the Mw 6.2 mainshock and Mw 5.6 aftershock of the 2011 Christchurch earthquake. The parameters of the numerical models are constrained by site investigation of selected stations. We find that numerical simulations closely reproduce the large AsVAs recorded at stations HVSC and PRPC, suggesting that these ground-motion records were contaminated by the nonlinear, soil–structure interaction. Seismic sensors located near the corner of a concrete slab are shown to be more prone to this phenomenon. Our results further suggest that artificial recording of large AsVAs due to the nonlinear, soil–structure interaction can be mitigated if a seismic sensor is placed closer to the center of a foundation slab. The analytical procedure presented in this study may be useful in identifying the occurrence of AsVAs elsewhere and in assessing whether AsVAs are caused by the nonlinear, soil–structure interaction.


2019 ◽  
Author(s):  
Saad Khan ◽  
Mark van der Meijde ◽  
Harald van der Werff ◽  
Muhammad Shafique

Abstract. Ground surface topography influence the spatial distribution of earthquake induced ground shaking. This study shows the influence of topography on seismic amplification during the 2005 Kashmir earthquake. Earth surface topography scatters and reflects seismic waves, which causes spatial variation in seismic response. We perform a 3D simulation of the 2005 Kashmir earthquake in Muzaffarabad with spectral finite element method. The moment tensor solution of the 2005 Kashmir earthquake is used as the seismic source. Our results show amplification of seismic response on ridges and de-amplification in valleys. It is found that slopes facing away from the source receive an amplified seismic response, and that 98 % of the highly damaged areas are located in the topographically amplified seismic response zone.


2020 ◽  
Vol 20 (2) ◽  
pp. 399-411 ◽  
Author(s):  
Saad Khan ◽  
Mark van der Meijde ◽  
Harald van der Werff ◽  
Muhammad Shafique

Abstract. Ground surface topography influences the spatial distribution of earthquake-induced ground shaking. This study shows the influence of topography on seismic amplification during the 2005 Kashmir earthquake. Earth surface topography scatters and reflects seismic waves, which causes spatial variation in seismic response. We performed a 3-D simulation of the 2005 Kashmir earthquake in Muzaffarabad with the spectral finite-element method. The moment tensor solution of the 2005 Kashmir earthquake was used as the seismic source. Our results showed amplification of seismic response on ridges and de-amplification in valleys. It was found that slopes facing away from the source received an amplified seismic response, and that 98 % of the highly damaged areas were located in the topographically amplified seismic response zone.


2021 ◽  
Author(s):  
Leah Salditch ◽  
Seth Stein

<p>Probabilistic Seismic Hazard Assessment (PSHA) attempts to forecast the fraction of sites on a hazard map where ground shaking will exceed the mapped value within some time period. Because the maps are probabilistic forecasts, they explicitly assume that shaking will exceed the mapped value some of the time. At a point on a PSHA map, the probability p that during t years of observations shaking will exceed the value on a map with a T-year return period is assumed to be described by the exponential cumulative density function: p = 1 – exp(-t/T). The fraction of sites, f, where observed shaking exceeds the mapped value should behave the same way. To assess the 2018 USGS National Seismic Hazard Model maps for California, we created the California Historical Intensity Mapping Project (CHIMP), a 162-yr long dataset that combines and consistently reinterprets seismic intensity information that has been stored in disparate and sometimes hard-to-access locations (Salditch et al., 2020). We use two performance metrics; M0 based on the fraction of sites where modeled ground motion is exceeded, and M1 based on of the difference between the mapped and observed ground motion at all sites. M0 is implicit in PSHA because it measures the difference between the predicted and observed fraction of site exceedances and is therefore a key indicator of map performance.</p><p>We explore these metrics for CHIMP. Assuming the dataset to be correct, it appears that the hazard maps overpredicted shaking even correcting for the time period involved. Assuming the model is also correct, a shaking deficit exists between the model and observations. Possible reasons for this apparent overprediction/shaking deficit include: 1) the observations in CHIMP are biased low; 2) the observation period has been less seismically active than typical – either by chance or temporal variability due to stress shadow effects; 3) the model overpredicts due to either the earthquake rupture forecast or the ground motion models. Similar overpredictions appear for past shaking data in Italy, Japan, and Nepal, implying that seismic hazards are often overestimated. Whether this reflects too-high models and/or biased data remains an important question.</p>


1996 ◽  
Vol 86 (1A) ◽  
pp. 66-72 ◽  
Author(s):  
Michel Bouchon ◽  
Jeffrey S. Barker

Abstract The Northridge, California, earthquake that strongly shook the city of Los Angeles in January 1994, produced one of the highest ground accelerations ever recorded in an earthquake, at a site located on top of a small hill in Tarzana, about 6 km south of the epicenter. The subsequent study of aftershock recordings obtained by a dense seismic array deployed on the hill a few days after the earthquake showed the existence of a strong amplification at stations located at the top of the hill, relative to stations near the base (Spudich et al., 1996). Resonances and polarization rotations were also observed. We investigate in this study the role that the topography of the site played on the observed ground motions and accelerations. To this aim, we perform numerical simulations and study the response of the three-dimensional topography of the site to incident shear waves polarized in different directions. The method used is a boundary integral equation scheme in which the Green's functions are calculated by the discrete wavenumber method. The results obtained show that the topography of the site, though quite gentle (the hill is less than 20-m high), strongly affects the ground motions in the frequency range between 2 and 15 Hz. Many of the observed characteristics of the seismic response at Tarzana are explained in part by its topography: the consistent amplification of ground motion at and near the top of the hill, the directional seismic response of the hill that results in a strong amplification of the ground motion transverse to the direction of elongation of the hill, the existence of a fundamental transverse oscillatory resonance mode of the hill at 3 to 5 Hz, the rotation of the polarization of ground motion, and the spatial variation of amplification over the hill at the fundamental resonance mode. The seismic response of the topography, however, does not fully explain the amplitude of the effects observed. The three-dimensional geological structure of the site must in some way amplify the effect of the topography to produce the observed seismic response. In spite of not being as strong as the observed effect, the topographic effect of the site is considerable. The ground motion is amplified by factors ranging from 30% to 100% at some locations in the frequency range from 2 to 15 Hz. Rapid spatial variations of ground-shaking intensities can take place over distance scales of a few tens of meters at high frequency. Finally, the results of the simulation indicate that the topography of the site amplified the large east-west accelerations recorded there during the Northridge mainshock by 30% to 40%.


Author(s):  
Matteo Picozzi ◽  
Fabrice Cotton ◽  
Dino Bindi ◽  
Antonio Emolo ◽  
Guido Maria Adinolfi ◽  
...  

ABSTRACT Fault zones are major sources of hazard for many populated regions around the world. Earthquakes still occur unanticipated, and research has started to observe fault properties with increasing spatial and temporal resolution, having the goal of detecting signs of stress accumulation and strength weakening that may anticipate the rupture. The common practice is monitoring source parameters retrieved from measurements; however, model dependence and strong uncertainty propagation hamper their usage for small and microearthquakes. Here, we decipher the ground motion (i.e., ground shaking) variability associated with microseismicity detected by dense seismic networks at a near-fault observatory in Irpinia, Southern Italy, and obtain an unprecedentedly sharp picture of the fault properties evolution both in time and space. We discuss the link between the ground-motion intensity and the source parameters of the considered microseismicity, showing a coherent spatial distribution of the ground-motion intensity with that of corner frequency, stress drop, and radiation efficiency. Our analysis reveals that the ground-motion intensity presents an annual cycle in agreement with independent geodetic displacement observations from two Global Navigation Satellite System stations in the area. The temporal and spatial analyses also reveal a heterogeneous behavior of adjacent fault segments in a high seismic risk Italian area. Concerning the temporal evolution of fault properties, we highlight that the fault segment where the 1980 Ms 6.9 Irpinia earthquake nucleated shows changes in the event-specific signature of ground-motion signals since 2013, suggesting changes in their frictional properties. This evidence, combined with complementary information on the earthquake frequency–magnitude distribution, reveals differences in fault segment response to tectonic loading, suggesting rupture scenarios of future moderate and large earthquakes for seismic hazard assessment.


2020 ◽  
Author(s):  
Kentaro Emoto ◽  
Takeshi Nishimura ◽  
Hisashi Nakahara ◽  
Satoshi Miura ◽  
Mare Yamamoto ◽  
...  

<p>First DAS observation at Mt. Azuma, Japan was conducted in July 2019 using buried fiber optic cable along the road access to the volcano. Mt. Azuma is an active volcano located in the Tohoku region. Different from non-volcanic regions, wavefields in the volcano is more complex due to its topography and the strong heterogeneities beneath the volcanic edifice. The strength of the scattering of seismic waves due to small-scale velocity heterogeneities in the volcano is reported to be more than one order higher than that in the non-volcanic region. To estimate small-scale heterogeneities, a dense observation network is necessary. The high spatial resolution is one of the advantages of the DAS observation. Therefore, DAS observation in the volcano might be a good chance for the estimation of the small-scale heterogeneity.</p><p> </p><p>We used 14km length of the fiber optic cable buried along to the access road to the observatory near the summit installed by the Ministry of Land, Infrastructure, Transport and Tourism to monitor the volcanic activities. The spatial and temporal samplings were 10m and 1000Hz, respectively. The observation period was for 3 weeks. In addition to regional and teleseismic earthquakes, volcanic earthquakes were also observed. A teleseismic P-wave was analyzed to investigate the effect of small-scale heterogeneities. Because the incident angle of the teleseismic P-wave is almost vertical to the portion of the fiber optic cable used for the DAS observation, a simple model can be used. We calculate the cross-correlation coefficient (CCC) of waveforms between channels and analyze its dependence on the distances between channel pairs. The recorded wavefield was fluctuated by scattering due to the small-scale heterogeneities and different waveforms were recorded even though the propagation distances are the same. Therefore, the spatial variation of the waveforms of teleseismic P-wave recorded at surface stations would be related to the small-scale heterogeneities beneath of the array.</p><p> </p><p>The CCC decreases with increasing separation distance and converges to a constant value. This shape can be modeled by the Gaussian function and we defined the spatial scale of CCC by fitting the Gaussian function. The scale decreases with increasing frequency. The finite difference simulation of the wave propagation was performed by changing the velocity structure and compare the synthetic and observed CCCs. We found that the effect of the topography is most significant on the CCC. Because analyzed waveforms mainly consist of the converted surface wave from the teleseismic P-wave, the effect of subsurface small-scale heterogeneities is not significant. Our result shows that it is necessary to consider the effect of the topography in analyses of DAS data recorded in volcanoes.</p>


Sign in / Sign up

Export Citation Format

Share Document