scholarly journals Fascinating fructophilic lactic acid bacteria associated with various fructose-rich niches

Author(s):  
Artur Pachla ◽  
Aneta A. Ptaszyńska ◽  
Magdalena Wicha ◽  
Ewa Oleńska ◽  
Wanda Małek

<p>Fructophilic lactic acid bacteria (FLAB) are recently described group of lactic acid bacteria (LAB) that prefer fructose instead of glucose as a carbon source. FLAB have been isolated from fructose-rich niches such as flowers, fruits, fermented fruits, and gastrointestinal tracts of insects whose diet is based on fructose. These bacteria are divided into obligate and facultative fructophilc lactobacilli based on biochemical features. All FLAB are heterofermentative microorganisms, which during fermentation of carbohydrates, in addition to lactic acid, produce also acetic acid, and alcohol as end-products. The fructophilic bacteria, inhabiting the honeybee guts positively impact the health of their hosts, improve their longevity, and are promising probiotic candidates. These symbionts of honeybees play a key role in the production of honey by bees and are present in a large number in fresh honey. The combination of osmolarity with antibacterial, and therapeutic properties of these bacteria make fresh honey optimal alternative for future wound healing.</p>

2019 ◽  
Vol 20 (7) ◽  
pp. 1659
Author(s):  
Katarzyna Pielech-Przybylska ◽  
Maria Balcerek ◽  
Grzegorz Ciepielowski ◽  
Barbara Pacholczyk-Sienicka ◽  
Łukasz Albrecht ◽  
...  

The qualitative and quantitative composition of volatile compounds in fermented distillery mash determines the quality of the obtained distillate of agricultural origin (i.e., raw spirit) and the effectiveness of further purification steps. Propan-2-ol (syn. isopropyl alcohol), due to its low boiling point, is difficult to remove by rectification. Therefore, its synthesis needs to be limited during fermentation by Saccharomyces cerevisiae yeast, while at the same time controlling the levels of acetaldehyde and acetic acid, which are likewise known to determine the quality of raw spirit. Lactic acid bacteria (LAB) are a common but undesirable contaminant in distillery mashes. They are responsible for the production of undesirable compounds, which can affect synthesis of propan-2-ol. Some bacteria strains are able to synthesize isopropyl alcohol. This study therefore set out to investigate whether LAB with S. cerevisiae yeast are responsible for conversion of acetone to propan-2-ol, as well as the effects of the amount of LAB inoculum and fermentation parameters (pH and temperature) on the content of isopropyl alcohol, acetaldehyde, lactic acid and acetic acid in fermented mashes. The results of NMR and comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC-TOF MS) analysis confirmed the ability of the yeast and LAB strains to metabolize acetone via its reduction to isopropyl alcohol. Efficient fermentation of distillery mashes was observed in all tested mashes with an initial LAB count of 3.34–6.34 log cfu/mL, which had no significant effect on the ethanol content. However, changes were observed in the contents of by-products. Lowering the initial pH of the mashes to 4.5, without and with LAB (3.34–4.34 log cfu/mL), resulted in a decrease in propan-2-ol and a concomitant increase in acetaldehyde content, while a higher pH (5.0 and 5.5) increased the content of propan-2-ol and decreased acetaldehyde content. Higher temperature (35 °C) promoted propan-2-ol synthesis and also resulted in increased acetic acid content in the fermented mashes compared to the controls. Moreover, the acetic acid content rose with increases in the initial pH and the initial LAB count.


2020 ◽  
Vol 129 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Mio Kawai ◽  
Risa Harada ◽  
Nobuo Yoda ◽  
Shino Yamasaki-Yashiki ◽  
Eiichiro Fukusaki ◽  
...  

1968 ◽  
Vol 14 (7) ◽  
pp. 749-753 ◽  
Author(s):  
Yu-Ying F. Li ◽  
Lucille K. Georg

Gas–liquid chromatography (g.l.c.) was used for the analysis of certain metabolic end products of Actinomyces propionicus, as an aid in the separation of this organism from the morphologically similar Actinomyces species, A. israelii and A. naeslundii. Profiles of the chromatograms for the major volatile acids of five strains of A. propionicus studied were found to be distinct from those of four strains of A. israelii and four strains of A. naeslundii. The ratio of propionic acid to acetic acid was approximately 50 times as great for A. propionicus as for the other Actinomyces species. Formic acid was present in significant amounts in both A. israelii and A. naeslundii, but was present only in trace amounts in A. propionicus.Two major nonvolatile acids, lactic and succinic, were identified for the A. israelii and A. naeslundii strains. One of the A. propionicus strains also showed both acids in significant amounts; however, the other four strains of A. propionicus showed succinic acid in large amounts, but only trace amounts of lactic acid.


2007 ◽  
Vol 73 (6) ◽  
pp. 1809-1824 ◽  
Author(s):  
Nicholas Camu ◽  
Tom De Winter ◽  
Kristof Verbrugghe ◽  
Ilse Cleenwerck ◽  
Peter Vandamme ◽  
...  

ABSTRACT The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named“ Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).


Author(s):  
O.G.G. Almeida ◽  
E.C.P De Martinis

Metagenomic studies about cocoa fermentation have mainly reported on the analysis of short reads for determination of Operational Taxonomic Units. However, it is also important to determine MAGs, which are genomes deriving from the assembly of metagenomics. For this research, all the cocoa metagenomes from public databases were downloaded, resulting in five datasets: one from Ghana and four from Brazil. Besides, in silico approaches were used to describe putative phenotypes and metabolic potential of MAGs. A total of 17 high-quality MAGs were recovered from these microbiomes, as follows: (i) fungi - Yamadazyma tenuis (n=1); (ii) lactic acid bacteria - Limosilactobacillus fermentum (n=5), Liquorilactobacillus cacaonum (n=1) , Liquorilactobacillus nagelli (n=1), Leuconostoc pseudomesenteroides (n=1) and Lactiplantibacillus plantarum subsp. plantarum (n=1); (iii) acetic acid bacteria - Acetobacter senegalensis (n=2) and Kozakia baliensis (n=1) and (iv) Bacillus subtilis (n=1) Brevundimonas sp. (n=2) and Pseudomonas sp. (n=1). Medium-quality MAGs were also recovered from cocoa microbiomes, including some detected for the first time in this environment ( Liquorilactobacillus vini , Komagataeibacter saccharivorans and Komagataeibacter maltaceti ) and other previously described ( Fructobacillus pseudoficulneus and Acetobacter pasteurianus ). Taken all together, the MAGs were useful to provide an additional description of the microbiome of cocoa fermentation, revealing previously overlooked microorganisms, with prediction of key phenotypes and biochemical pathways. Importance The production of chocolate starts with the harvesting of cocoa fruits and the spontaneous fermentation of the seeds, in a microbial succession that depends on yeasts, lactic acid bacteria and acetic acid bacteria in order to eliminate bitter and astringent compounds present in the raw material, which will be further roasted and grinded to originate the cocoa powder that will enter the food processing industry. The microbiota of cocoa fermentation is not completely know, and yet it advanced from culture-based studies to the advent of Next Generation DNA sequencing, with the generation of a myriad of data, that need bioinformatic approaches to be properly analysed. Although the majority metagenomic of studies have been based on short reads (OTUs), it is also important to analyse entire genomes to determine more precisely possible ecological roles of different species. Metagenome-assembled genomes (MAGs) are very useful for this purpose, and in this paper, MAGs from cocoa fermentation microbiomes were described, as well the possible implications of their phenotypic and metabolic potentials are discussed.


OENO One ◽  
1984 ◽  
Vol 18 (1) ◽  
pp. 67 ◽  
Author(s):  
Suzanne Lafon-Lafourcade ◽  
Pascal Ribéreau-Gayon

<p style="text-align: justify;">Acetic acid and lactic acid bacteria were present at all stages of wine making. A lower pH and a highter ethanol concentration limit the risks of alteration. During the conservation, a low temperature, good use of S0<sub>2</sub> and frequent checkings ensure control of bacterial growth and metabolism.</p>


Sign in / Sign up

Export Citation Format

Share Document