scholarly journals Cell‐envelope proteinases from lactic acid bacteria: Biochemical features and biotechnological applications

Author(s):  
Dawei Ji ◽  
Jingying Ma ◽  
Min Xu ◽  
Dominic Agyei
2001 ◽  
Vol 183 (14) ◽  
pp. 4157-4166 ◽  
Author(s):  
Y. Dieye ◽  
S. Usai ◽  
F. Clier ◽  
A. Gruss ◽  
J.-C. Piard

ABSTRACT We designed an expression and export system that enabled the targeting of a reporter protein (the staphylococcal nuclease Nuc) to specific locations in Lactococcus lactis cells, i.e., cytoplasm, cell wall, or medium. Optimization of protein secretion and of protein cell wall anchoring was performed with L.lactis cells by modifying the signals located at the N and C termini, respectively, of the reporter protein. Efficient translocation of precursor (∼95%) is obtained using the signal peptide from the lactococcal Usp45 protein and provided that the mature protein is fused to overall anionic amino acids at its N terminus; those residues prevented interactions of Nuc with the cell envelope. Nuc could be covalently anchored to the peptidoglycan by using the cell wall anchor motif of the Streptococcus pyogenes M6 protein. However, the anchoring step proved to not be totally efficient in L. lactis, as considerable amounts of protein remained membrane associated. Our results may suggest that the defect is due to limiting sortase in the cell. The optimized expression and export vectors also allowed secretion and cell wall anchoring of Nuc in food-fermenting and commensal strains of Lactobacillus. In all strains tested, both secreted and cell wall-anchored Nuc was enzymatically active, suggesting proper enzyme folding in the different locations. These results provide the first report of a targeting system in lactic acid bacteria in which the final location of a protein is controlled and biological activity is maintained.


2016 ◽  
Vol 80 (3) ◽  
pp. 837-890 ◽  
Author(s):  
Konstantinos Papadimitriou ◽  
Ángel Alegría ◽  
Peter A. Bron ◽  
Maria de Angelis ◽  
Marco Gobbetti ◽  
...  

SUMMARYLactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g.,Lactococcus lactis), probiotic (e.g., severalLactobacillusspp.), and pathogenic (e.g.,EnterococcusandStreptococcusspp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.


2000 ◽  
Vol 66 (11) ◽  
pp. 4772-4778 ◽  
Author(s):  
María Dolores Fernandez-Espla ◽  
Peggy Garault ◽  
Véronique Monnet ◽  
Françoise Rul

ABSTRACT Streptococcus thermophilus CNRZ 385 expresses a cell envelope proteinase (PrtS), which is characterized in the present work, both at the biochemical and genetic levels. Since PrtS is resistant to most classical methods of extraction from the cell envelopes, we developed a three-step process based on loosening of the cell wall by cultivation of the cells in the presence of glycine (20 mM), mechanical disruption (with alumina powder), and enzymatic treatment (lysozyme). The pure enzyme is a serine proteinase highly activated by Ca2+ ions. Its activity was optimal at 37°C and pH 7.5 with acetyl-Ala-Ala-Pro-Phe-paranitroanilide as substrate. The study of the hydrolysis of the chromogenic and casein substrates indicated that PrtS presented an intermediate specificity between the most divergent types of cell envelope proteinases from lactococci, known as the PI and PIII types. This result was confirmed by the sequence determination of the regions involved in substrate specificity, which were a mix between those of PI and PIII types, and also had unique residues. Sequence analysis of the PrtS encoding gene revealed that PrtS is a member of the subtilase family. It is a multidomain protein which is maturated and tightly anchored to the cell wall via a mechanism involving an LPXTG motif. PrtS bears similarities to cell envelope proteinases from pyogenic streptococci (C5a peptidase and cell surface proteinase) and lactic acid bacteria (PrtP, PrtH, and PrtB). The highest homologies were found with streptococcal proteinases which lack, as PrtS, one domain (the B domain) present in cell envelope proteinases from all other lactic acid bacteria.


LWT ◽  
2018 ◽  
Vol 91 ◽  
pp. 293-302 ◽  
Author(s):  
Aya N. Khanji ◽  
Florentin Michaux ◽  
Dominique Salameh ◽  
Toufic Rizk ◽  
Sylvie Banon ◽  
...  

Author(s):  
João P. C. Pinto ◽  
Oscar P. Kuipers ◽  
Jan Kok

Author(s):  
Artur Pachla ◽  
Aneta A. Ptaszyńska ◽  
Magdalena Wicha ◽  
Ewa Oleńska ◽  
Wanda Małek

<p>Fructophilic lactic acid bacteria (FLAB) are recently described group of lactic acid bacteria (LAB) that prefer fructose instead of glucose as a carbon source. FLAB have been isolated from fructose-rich niches such as flowers, fruits, fermented fruits, and gastrointestinal tracts of insects whose diet is based on fructose. These bacteria are divided into obligate and facultative fructophilc lactobacilli based on biochemical features. All FLAB are heterofermentative microorganisms, which during fermentation of carbohydrates, in addition to lactic acid, produce also acetic acid, and alcohol as end-products. The fructophilic bacteria, inhabiting the honeybee guts positively impact the health of their hosts, improve their longevity, and are promising probiotic candidates. These symbionts of honeybees play a key role in the production of honey by bees and are present in a large number in fresh honey. The combination of osmolarity with antibacterial, and therapeutic properties of these bacteria make fresh honey optimal alternative for future wound healing.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gabriela N. Tenea

Protecting foods from contamination applying peptides produced by lactic acid bacteria is a promising strategy to increase the food quality and safety. Interacting with the pathogen membranes might produce visible changes in shape or cell wall damage. Previously, we showed that the peptides produced by Lactobacillus plantarum UTNGt2, Lactobacillus plantarum UTNCys5-4, and Lactococcus lactis subsp. lactis UTNGt28 exhibit a broad spectrum of antibacterial activity against several foodborne pathogens in vitro. In this study, their possible mode of action against the commensal microorganism Salmonella enterica subsp. enterica ATCC51741 was investigated. The target membrane permeability was determined by detection of beta-galactosidase release from ONPG (o-nitro-phenyl-L-D-galactoside) substrate and changes in the whole protein profile indicating that the peptide extracts destroy the membrane integrity and may induce breaks in membrane proteins to some extent. The release of aromatic molecules such as DNA/RNA was detected after the interaction of Salmonella with the peptide extract. Transmission electronic microscopy (TEM) micrographs depicted at least four simultaneous secondary events after the peptide extract treatment underlying their antimicrobial actions, including morphological alterations of the membrane. Spheroplast and filament formation, vacuolation, and DNA relaxation were identified as the principal events from the Gt2 and Cys5-4 peptide extracts, while Gt28 induced the formation of ghost cells by release of cytoplasmic content, filaments, and separation of cell envelope layers. Gel retarding assays indicate that the Gt2 and Gt28 peptide extracts are clearly binding the Salmonella DNA, while Cys5-4 partially interacted with Salmonella genomic DNA. These results increased our knowledge about the inhibitory mechanism employed by several peptide extracts from native lactic acid bacteria against Salmonella. Further, we shall develop peptide-based formulation and evaluate their biocontrol effect in the food chains.


Author(s):  
Kim I. Sørensen ◽  
Inge Kjærbølling ◽  
Ana Rute Neves ◽  
Ronnie Machielsen ◽  
Eric Johansen

Many antibiotics and antimicrobial agents have the bacterial cell envelope as their primary target, interfering with functions such as synthesis of peptidoglycan, membrane stability and permeability, and attachment of surface components. The cell envelope is the outermost barrier of the bacterial cell, conferring protection against environmental stresses, and maintaining structural integrity and stability of the growing cell, while still allowing for required metabolism. In this work, inhibitory concentrations of several different cell envelope targeting antibiotics and antimicrobial agents were used to select for derivatives of lactic acid bacteria (LAB) with improved properties for dairy applications. Interestingly, we observed that for several LAB species a fraction of the isolates had improved milk texturizing capabilities. To further improve our understanding of the mechanisms underlying the improved rheology and to validate the efficacy of this method for strain improvement, genetic and physiological characterization of several improved derivatives was performed. The results showed that the identified genetic changes are diverse and affect also other cellular functions than the targeted cell surface. In short, this study describes a new versatile and powerful toolbox based on targeting of the cell envelope to select for LAB derivatives with improved phenotypic traits for dairy applications.


Sign in / Sign up

Export Citation Format

Share Document