scholarly journals Thermo-Acoustical Study of Biologically Active 1,1’-Bis(3-Methyl-4-Carboxyethylphenoxy) Cyclohexane at Four Different Temperatures

Author(s):  
Bhavin. B. Dhaduk ◽  
Parsotam H. Parsania

Density (ρ), viscosity (η), ultrasonic speed (U), and thermo-acoustical parameters such as specific acoustical impedance (Z), adiabatic compressibility (κa), internal pressure (π), free volume (Vf), inter molecular free path length (Lf), Van der Waals constant (b), viscous relaxation time (τ), classical absorption coefficient (α/f2)cl, Rao’s molar sound function (Rm), solvation number (Sn), Gibbs free energy of activation (ΔG*), enthalpy of activation (ΔH*) and entropy of activation (ΔS*) of biologically active 1,1’-bis (3-methyl-4-carboxyethylphenoxy) cyclohexane (BMCPC) in 1,4-dioxane (DO), ethyl acetate (EA), tetrahydrofuran (THF) have been studied at four different temperatures: 298, 303, 308 and 313 K to understand the molecular interactions in the solutions. A good to excellent correlation between a given parameter and concentration is observed at all temperatures and solvent systems studied. Linear increase or decrease [except (α/f2)cl ] of acoustical parameters with concentration and temperature indicated the existence of strong molecular interactions. ΔG* decreased linearly with increasing concentration and temperature in DO and EA systems and increased with temperature in THF system. ΔH* and ΔS* are found practically concentration independent in case of DO and EA system but both are found concentration dependent in THF system.

Author(s):  
Bhavesh J. Gangani ◽  
Parsotam H. Parsania

The density (ρ), viscosity (η) and ultrasonic speed (U) (2MHz) of THF solutions of symmetric double Schiff bases (SDSB-1,SDSB-2 and SDSB-3) were determined at 303.15, 308.15 and 313.15 K. Various acoustical parameters such as specific acoustical impedance (Z), isentropic compressibility (ks), Rao’s molar sound function (Rm), Van der Waals constant (b), internal pressure (π), free volume (Vf), intermolecular free path length (Lf), viscous relaxation time (τ) and classical absorption coefficient (α/f2)Cl), were determined using ρ, η and U data. The results are interpreted in terms of molecular interactions occurring in the solutions at different temperatures and concentrations. Linear increase of ρ, η U, Z, Rm, b, (α/f2)Cl and τ with increasing C, linear decrease of КS, Lf and π with increasing T, Vf increased linearly with C and T except SDSB-3 supported existence of strong molecular interactions in the solutions and confirming solvophilic nature of the Schiff bases. The structure, nature and size of the solutes and solvent, concentration and temperature affected molecular interactions.


2011 ◽  
Vol 8 (2) ◽  
pp. 762-766
Author(s):  
Pooja P. Adroja ◽  
S. P. Gami ◽  
J. P. Patel ◽  
P. H. Parsania

The density (ρ), viscosity (η) and ultrasonic speed (U) (2 MHz) of chloroform, THF, ethyl alcohol, ethyl acetate, 1,4-dioxane and 1,1ʼ-binaphthalene-2,2ʼ-diyl diacetate (DBNA) solutions have been determined at 308.15 K. Various acoustical parameters namely specific acoustical impedance (Z), adiabatic compressibility (κa), Van der Waals constant (b), intermolecular path length (Lf), internal pressure (π), Raoʼs molar sound function (R), relaxation time (τ), classical absorption coefficient (α/f2)cland solvation number (Sn) have been derived from ρ, η and U data and correlated with concentration (C). A fairly good to excellent correlation has been observed between a particular parameter and C. Linear increase of Z, R, b, (α/f2)cland τ (except EA) (R2= 0.90 – 0.999) and linear decrease of κs, π and Lf(R2= 0.947 – 0.995) with C supported existence of powerful molecular interactions in the solutions and further supported by nonlinear increase of Snwith C. A fairly constant Gibbs free energy of activation has been observed in all the solvent systems studied.


Author(s):  
B.J. Gangani ◽  
Parsotam H. Parsania

The density, viscosity and ultrasonic speed (2MHz) of chloroform and symmetric double Schiff bases have been investigated at 308.15K. Various acoustical parameters such as specific acoustical impedance (Z), adiabatic compressibility (Кa), Rao’s molarsound function (Rm), Vander Waals constant (b), internal pressure (π), free volume (Vf), intermolecular free path length (Lf), classical absorption coefficient (α/f2)Cl) and viscous relaxation time (τ) were determined using ultrasonic speed (U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Increasing linear or nonlinear trends of (Z, Rm, b, τ and (α/f2)Cl) and decreasing trend of Кa, Lf,, π and Vf with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions and solvophilic nature of the Schiff bases, which is further supported by the positive values of solvation number. The nature and position of substituent also affected the strength of molecular interactions.


Author(s):  
C.H. Srinivasu ◽  
K. Anil Kumar ◽  
S.K. Fakruddin ◽  
K. Narendra ◽  
T. Anjaneyulu

The values of ultrasonic velocity (u), density (ρ), and viscosity (η) have been measured experimentally in the binary liquid mixture containing 1-butanol and hexane over the entire range of composition at different temperatures 313.15 K, 318.15 K and 323.15 K. This experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), free length (Lf), molar volume (Vm) and acoustic impedance(z). The results have been qualitatively used to explain the molecular interactions between the components of the liquid mixture.


Author(s):  
G. Pavan Kumar ◽  
Ch. Praveen Babu ◽  
K. Samatha ◽  
A.N. Jyosthna ◽  
K. Showrilu

Ultrasonic velocities (U), densities (ρ), and coefficient of viscosities (η) are measured for binary mixtures containing (i) p-chlorotoluene and (ii) benzene at 303.15 K, 308.15 K, 313.15 K and 318.15 K to understand the molecular interaction. Various acoustical parameters such as adiabatic compressibility (βad), free length (Lf), acoustic impedance (Z), free volume (Vf), molar volume (Vm), Rao’s constant (R), Wada’s constant (W) and internal pressure (πi), are calculated from the measured values of U, ρ, and η. The trend in acoustical parameters also substantiates to asses strong molecular interactions.


Author(s):  
Shipra Baluja ◽  
Elham Abdullah Mo Alnayab

Measurement of ultrasonic velocity, density and viscosity of solutions of Tetra Butyl Ammonium Bromide have been carried outin different solvents (water, methanol, ethanol, 1-propanol and 1-butanol) as functions of concentration (1 to 0.1 M) at different temperatures (298.15 K to 318.15 K). Using these experimental data, various acoustical and apparent parameters such as acoustical impedance, intermolecular free length, adiabatic compressibility, molar compressibility, Van der Waals constant, relaxation strength, apparent molar isentropic compressibility, apparent molar volume have been evaluated. Further, some thermodynamic parameters such as Gibbs free energy of activation, enthalpy and entropy of activation have been evaluated. All these parameters have been evaluated to understand type of interactions present in studied solutions.


Author(s):  
Syed Ibrahim P.S. ◽  
Chidambaravinayagam S ◽  
Senthil Murugan J ◽  
Edward Jeyakumar J

The Ultrasonic velocity(U), density(?), and viscosity(?) have been measured for the ternary liquid mixtures of N,N-Dimethyl Formamide (NNDMF),   1 butanol and n hexane at various temperatures viz., 303 k,308 k and 313 k at constant frequency 2 MHz. for different concentrations ranges from 0.001M to 0.01M. The acoustical parameters such as adiabatic compressibility(?), Rao constant(R), absorption coefficient (?/f2), internal pressure(?i), cohesive energy(CE), free volume(Vf), free length(Lf) and acoustic impedence(z), were calculated from the experimental data. These parameters in accordance with their ultrasonic velocities corresponding to different concentrations were discussed.


2010 ◽  
Vol 7 (2) ◽  
pp. 353-356 ◽  
Author(s):  
S. Mullainathan ◽  
S. Nithiyanantham

The ultrasonic velocity, density and viscosity at 303 K have been measured in the binary systems of 1,4-dioxane and acetone with water. From the experimental data, various acoustical parameters such as adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), internal pressure (πi), Rao’s constant (R), Wada’s constant (W) and specific acoustical impedance (Z) were calculated. The results are interpreted in terms of molecular interaction between the components of the mixtures.


Author(s):  
A.B. Naik

Density, ultrasonic velocity of pure solvent, dimethylformamide (DMF) and ligand solutions of substituted thiazoles in DMF-water mixture were measured at different temperatures (303.15, 308.15, 313.15 and 318.15) K. Acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustical impedance and relative association were determined from experimental data of density and ultrasonic velocity. The effect of temperature variations on the strength of molecular interaction has also been studied. An excellent correlation represents in terms of solute-solvent and solvent-solvent interaction at all temperatures.


2015 ◽  
Vol 1086 ◽  
pp. 111-119
Author(s):  
Selvi C. Senthamil ◽  
S. Ravichandran ◽  
C.P. Malliga ◽  
C. Thenmozhi ◽  
V. Kannappan

Ultrasonic velocity and density of salicilaldehyde with iodine in hexane has been measured at 293.15K, 298.15K, 303.15K and 308.15K in different concentration. Ultrasonic velocity has been measured using single frequency interferometer at 2MHz (Model F-81). By using the Ultrasonic velocity (u), density (ρ) and coefficient of viscosity (η) and the other acoustical parameters adiabatic compressibility (κ), free length (Lf), interaction parameter (α), Free volume (Vf) were calculated. The addition of hexane with a mixture leads to a compact structure due to presence of dipolar type interaction. This contributes to the decrease in free volume values and the internal pressure shows an increasing trend. The results have been discussed in terms of solute-solute and solute-solvent interactions between the component and the compatibility of these methods in predicting the interactions in these mixtures has also been discussed.Key Words salicilaldehyde, iodine, hexane, Ultrasonic velocity, molecular interactions.


Sign in / Sign up

Export Citation Format

Share Document