Synthesis and Biological Evaluation of some Novel Pyrano[2,3-d]Pyrimidine Derivatives

Author(s):  
Pratik K. Talpara ◽  
Guarang G. Dubal ◽  
Viresh H. Shah

The synthesis of novel Pyrano[2,3-d]pyrimidine derivatives, had been synthesized by three component domino Knoevenagel hetero Diels-Alder reaction. The products were assayed for their in vitro biological assay antibacterial activity against with two Gram-positive bacteria Staphylococcus aureus MTCC-96, Streptococcus pyogenes MTCC 443, two Gram-negative bacteria Escherichia coli MTCC 442, Pseudomonas aeruginosa MTCC 441 and three fungal strains Candida albicans MTCC 227, Aspergillus Niger MTCC 282, Aspergillus clavatus MTCC 1323 taking ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin, and griseofulvin as standard drugs. Among the various synthesized heterocyclic compounds, 1b, 1c and 1g are display broad spectrum antibacterial and antifungal activities against both gram-positive and gram-negative bacteria as compared with standard drugs.

2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


Author(s):  
Pooja Pisal ◽  
Meenakshi Deodhar ◽  
Amol Kale ◽  
Ganesh Nigade ◽  
Smita Pawar

Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.


2004 ◽  
Vol 48 (8) ◽  
pp. 2831-2837 ◽  
Author(s):  
Mizuyo Kurazono ◽  
Takashi Ida ◽  
Keiko Yamada ◽  
Yoko Hirai ◽  
Takahisa Maruyama ◽  
...  

ABSTRACT ME1036, formerly CP5609, is a novel parenteral carbapenem with a 7-acylated imidazo[5,1-b]thiazole-2-yl group directly attached to the carbapenem moiety of the C-2 position. The present study evaluated the in vitro activities of ME1036 against clinical isolates of gram-positive and gram-negative bacteria. ME1036 displayed broad activity against aerobic gram-positive and gram-negative bacteria. Unlike other marketed β-lactam antibiotics, ME1036 maintained excellent activity against multiple-drug-resistant gram-positive bacteria, such as methicillin-resistant staphylococci and penicillin-resistant Streptococcus pneumoniae (PRSP). The MICs of this compound at which 90% of isolates were inhibited were 2 μg/ml for methicillin-resistant Staphylococcus aureus (MRSA), 2 μg/ml for methicillin-resistant coagulase-negative staphylococci, and 0.031 μg/ml for PRSP. In time-kill studies with six strains of MRSA, ME1036 at four times the MIC caused a time-dependent decrease in the numbers of viable MRSA cells. The activity of ME1036 against MRSA is related to its high affinity for penicillin-binding protein 2a, for which the 50% inhibitory concentration of ME1036 was approximately 300-fold lower than that of imipenem. In conclusion, ME1036 demonstrated a broad antibacterial spectrum and high levels of activity in vitro against staphylococci, including β-lactam-resistant strains.


Author(s):  
G. D. Shermatova

Abstract: The leaves and roots of Rumex confertus Willd were tested in vitro for antibacterial and fungal activity in the fractions of gasoline, chloroform, ethyl acetate and butanol. As a result, it was found that the leaves of the Rumex confertus Willd plant, chloroform and ethyl acetate fractions of the root part have antibacterial activity against fungi and gram-positive bacteria. Keywords: Rumex confertus Willd, fractions, extracts, antibacterial, antifungal


2000 ◽  
Vol 68 (3) ◽  
pp. 1600-1607 ◽  
Author(s):  
Andreas Sing ◽  
Thomas Merlin ◽  
Hans-Peter Knopf ◽  
Peter J. Nielsen ◽  
Harald Loppnow ◽  
...  

ABSTRACT We investigated the reason for the inability of lipopolysaccharide (LPS)-resistant (Lps-defective [Lpsd ]) C57BL/10ScCr mice to produce beta interferon (IFN-β) when stimulated with bacteria. For this purpose, the IFN-β and other macrophage cytokine responses induced by LPS and several killed gram-negative and gram-positive bacteria in LPS-sensitive (Lps-normal [Lpsn ]; C57BL/10ScSn and BALB/c) and Lpsd (C57BL/10ScCr and BALB/c/l) mice in vitro and in vivo were investigated on the mRNA and protein levels. In addition, double-stranded RNA (dsRNA) was used as a nonbacterial stimulus. LPS and all gram-negative bacteria employed induced IFN-β in the Lpsn mice but not in theLpsd mice. All gram-positive bacteria tested failed to induce significant amounts of IFN-β in all four of the mouse strains used. As expected, all other cytokines tested (tumor necrosis factor alpha, interleukin 1α [IL-1α], IL-6, and IL-10) were differentially induced by gram-negative and gram-positive bacteria. Stimulation with dsRNA induced IFN-β and all other cytokines mentioned above in all mouse strains, regardless of their LPS sensitivities. The results suggest strongly that LPS is the only bacterial component capable of inducing IFN-β in significant amounts that are readily detectable under the conditions used in this study. Consequently, in mice, IFN-β is inducible only by gram-negative bacteria, but not in C57BL/10ScCr or other LPS-resistant mice.


2015 ◽  
Vol 156 (44) ◽  
pp. 1782-1786 ◽  
Author(s):  
Erzsébet Burgettiné Böszörményi ◽  
István Barcs ◽  
Gyula Domján ◽  
Katalin Bélafiné Bakó ◽  
András Fodor ◽  
...  

Introduction: Many multi-resistant patogens appear continuously resulting in a permanent need for the development of novel antibiotics. A large number of antibiotics introduced in clinical and veterinary practices are not effective. Antibacterial peptides with unusual mode of action may represent a promising option against multi-resistant pathogens. The entomopathogenic Xenorhabdus budapestensis bacteria produce several different antimicrobial peptides compounds such as bicornutin-A and fabclavin. Aim: The aim of the authors was to evaluate the in vitro antibacterial effect of Xenorhabdus budapestensis using zoonotic patogen bacteria. Method: Cell-free conditioned media and purified peptide fractions of Xenorhabdus budapestensis were tested on Gram-positive (Rhodococcus equi, Erysipelothrix rhusiopathia, Staphylococcus aureus, Streptococcus equi, Corynebacterium pseudotuberculosis, Listeria monocytagenes) and Gram-negative bacteria (Salmonella gallinarum, Salmonella derbi, Bordatella bronchoseptica, Escherichia coli, Pasteurella multocida, Aeromonas hydrophila) using agar diffusion test on blood agar plates. Results: It was found that Xenorhabdus budapestensis bacteria produced compounds with strong and dose-dependent effects on the tested organisms. Purified peptid fraction exerted a more marked effect than cell free conditioned media. Gram-positive bacteria were more sensitive to this antibacterial effect than Gram-negative bacteria. Conclusions: Antibacterial peptide compound from Xenorhabdus budapestensis exert marked antibacterial effect on zoonotic patogen bacteria and they should be further evaluated in future for their potential use in the control or prevention of zoonoses. Orv. Hetil., 2015, 156(44), 1782–1786.


Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3532-3543 ◽  
Author(s):  
Geoff P. Doherty ◽  
Mark J. Fogg ◽  
Anthony J. Wilkinson ◽  
Peter J. Lewis

Bacterial RNA polymerases (RNAPs) contain several small auxiliary subunits known to co-purify with the core α, β and β′ subunits. The ω subunit is conserved between Gram-positive and Gram-negative bacteria, while the δ subunit is conserved within, but restricted to, Gram-positive bacteria. Although various functions have been assigned to these subunits via in vitro assays, very little is known about their in vivo roles. In this work we constructed a pair of vectors to investigate the subcellular localization of the δ and ω subunits in Bacillus subtilis with respect to the core RNAP. We found these subunits to be closely associated with RNAP involved in transcribing both mRNA and rRNA operons. Quantification of these subunits revealed δ to be present at equimolar levels with RNAP and ω to be present at around half the level of core RNAP. For comparison, the localization and quantification of RNAP β′ and ω subunits in Escherichia coli was also investigated. Similar to B. subtilis, β′ and ω closely associated with the nucleoid and formed subnucleoid regions of high green fluorescent protein intensity, but, unlike ω in B. subtilis, ω levels in E. coli were close to parity with those of β′. These results indicate that δ is likely to be an integral RNAP subunit in Gram-positives, whereas ω levels differ substantially between Gram-positives and -negatives. The ω subunit may be required for RNAP assembly and subsequently be turned over at different rates or it may play roles in Gram-negative bacteria that are performed by other factors in Gram-positives.


2009 ◽  
Vol 6 (s1) ◽  
pp. S342-S346 ◽  
Author(s):  
Y. S. Chhonker ◽  
B. Veenu ◽  
S. R. Hasim ◽  
Niranjan Kaushik ◽  
Devendra Kumar ◽  
...  

Some new 2- phenyl benzimidazole derivatives were synthesised by cyclocondensation with appropriate reagents. The compounds synthesised were identified by1H NMR, FAB Mass and FT-IR spectroscopic techniques. All compounds studied in this work were screened for theirin vitroantimicrobial activities against the standard strains:Staphylococcus aureusATCC - 25923, ATCC - 441 andBacillus subtilisATCC- 6633 as gram positive,Escherichia coliATCC - 11775 andPseudomonas aeruginosaATCC 10145 as gram negative bacteria. Some of the compounds inhibited the growth of gram-positive bacteria (B. subtilisandS. aureus) at MIC values between 25 and 200 mg/mL. Some of the compounds exhibit antimicrobial activity against gram negative bacteria (E. coliandP. Aeruginosa) MIC values between 25 and 200 mg/mL.


2016 ◽  
Vol 1 (2) ◽  
pp. 134
Author(s):  
Lenni Indriani ◽  
Mohammad Dharmautama

The use of natural materials in the world of health tends to increase every single year, including  in dentistry. Due to the increased of resistance to antibiotics, the development and new innovations to obtain a new antimicrobial agent. Some potential sources of plants have been studied. One of the natural plants is used as drinks, food, medicine and antimicrobial agent is Hibiscus sabdariffa Linn commonly known as Roselle. Several major Gram-negative bacteria are related to periodontal disease such as Porphyromonas gingivalis (P.gingivalis), The dominant species of Gram-positive including Streptococcus sanguis(S.sanguis). The purpose of this in vitro study is to evaluate the Roselle ethanol extract against P.gingivalis bacteria (Gram negative bacteria) and S. sanguis (Gram positive bacteria) with a concentration of 2.5%, 5%, 7.5% and 10%. The in vitro study of antibacterial effectiveness of Roselle (Hibiscus sabdariffa L.) ethanol extract on P.gingivalis and S. sanguis. Natrium Agar (NA) solution was poured into a glass plate which had previously been sterilized and then left in place until the medium solidified. P.gingivalis and S.sanguis bacterial cultures were inoculated with inscribed which had solidified. Then put paper disk which had previously been saturated with Roselle extract samples with a concentration of 2.5%, 5%, 7.5% and 10%, and the negative control at the surface of the medium (Ampicillin) and incubated for 1 day. Clear zone is formed then observed and measured. There are 24 samples, consisting of 12 samples  P.gingivalis and S.sanguis 12 samples, given intervention roselle flower extract with four types of concentrations to determine the minimum inhibitory consentration (MIC). The observations show that the extensive zone of inhibition concentration of 2.5% a broad zone of inhibition is the smallest among other concentration, both of S.sanguins and P.gingivalis. Meanwhile, the average increases the broad zones of inhibition of P.gingivalis followed by increasing concentrations of roselle flower extract, making it the largest broad zones of inhibition are shown at a concentration of 10%, However, the bacteria S.sanguins, shows that vast zone of greatest inhibition was found at a concentration of 7.5%. The results of this research showed that the ethanol extract of roselle effectively inhibits P. gingivalis as Gram-positive bacteria atconcentrations of 10% and S. sanguins at a concentration of 7.5%. Iit can be concluded that the ethanol extract of roselle flowers effective at inhibiting Gram positive and Gram negative bacteria.


2016 ◽  
Vol 1 (2) ◽  
pp. 280
Author(s):  
Lenni Indriani ◽  
Mochamad Dharmautama

<p>The use of natural materials in the world of health tends to increase every single year, including  in dentistry. Due to the increased of resistance to antibiotics, the development and new innovations to obtain a new antimicrobial agent. Some potential sources of plants have been studied. One of the natural plants is used as drinks, food, medicine and antimicrobial agent is <em>Hibiscus sabdariffa </em><em>Linn</em> commonly known as Roselle. Several major Gram-negative bacteria are related to periodontal disease such as <em>Porphyromonas gingivalis</em><em> </em>(<em>P.gingivalis</em>), The dominant species of Gram-positive including <em>Streptococcus sanguis</em><em> </em>(<em>S.sanguis</em>). The purpose of this <em>in vitro</em> study is to evaluate the Roselle ethanol extract against <em>P.gingivalis </em>bacteria (Gram negative bacteria) and <em>S. sanguis</em> (Gram positive bacteria) with a concentration of 2.5%, 5%, 7.5% and 10%. The <em>in vitro </em>study of antibacterial effectiveness of Roselle (<em>H</em><em>ibiscus sabdariffa </em>L.) ethanol extract on <em>P.gingivalis</em> and <em>S. sanguis</em>. Natrium Agar (NA) solution was poured into a glass plate which had previously been sterilized and then left in place until the medium solidified. <em>P.gingivalis</em> and <em>S.sanguis</em> bacterial cultures were inoculated with inscribed which had solidified. Then put paper disk which had previously been saturated with Roselle extract samples with a concentration of 2.5%, 5%, 7.5% and 10%, and the negative control at the surface of the medium (Ampicillin) and incubated for 1 day. Clear zone is formed then observed and measured. There are 24 samples, consisting of 12 samples  <em>P.gingivalis</em> and <em>S.sanguis</em> 12 samples, given intervention roselle flower extract with four types of concentrations to determine the minimum inhibitory consentration (MIC). The observations show that the extensive zone of inhibition concentration of 2.5% a broad zone of inhibition is the smallest among other concentration, both of <em>S.sanguins </em><em>and </em><em>P.gingivalis</em>. Meanwhile, the average increases the broad zones of inhibition of <em>P.gingivalis </em>followed by increasing concentrations of roselle flower extract, making it the largest broad zones of inhibition are shown at a concentration of 10%, However, the bacteria <em>S.sanguins</em>, shows that vast zone of greatest inhibition was found at a concentration of 7.5%. The results of this research showed that the ethanol extract of roselle effectively inhibits <em>P. gingivalis</em> as Gram-positive bacteria atconcentrations of 10% and <em>S. </em><em>s</em><em>anguins</em> at a concentration of 7.5%. Iit can be concluded that the ethanol extract of roselle flowers effective at inhibiting Gram positive and Gram negative bacteria.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document