scholarly journals Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries

Author(s):  
Hui Wang ◽  
Sanjairaj Vijayavenkataraman ◽  
Yang Wu ◽  
Zhen Shu ◽  
Jie Sun ◽  
...  
Author(s):  
Varun Sharma ◽  
Khaja Moinuddin Shaik ◽  
Archita Choudhury ◽  
Pramod Kumar ◽  
Prateek Kala ◽  
...  

The present research paper attempts to study the effect of different process parameters on the dissolution rate during 3D printed tablets. Three-dimensional printing has the potential of serving tailored made tablets to cater personalized drug delivery systems. Fluorescein loaded PVA filaments through impregnation route was used to fabricate tablets based on Taguchi based design of experimentation using Fused Deposition Modelling (FDM). The effect of print speed, infill percentage and layer thickness were analyzed to study the effect on rate of dissolution. Infill percentage followed by print speed were found to be critical parameters affecting dissolution rate. The data analysis provided an insight into the study of interaction among different 3D printing parameters to develop an empirical relation for percentage release of the drug in human body.


2020 ◽  
pp. 089270572094537
Author(s):  
Ravinder Sharma ◽  
Rupinder Singh ◽  
Ajay Batish

The polyvinylidene difluoride + barium titanate (BaTiO3) +graphene composite (PBGC) is one of the widely explored thermoplastic matrix due to its 4D capabilities. The number of studies has been reported on the process parameters of twin-screw extruder (TSE) setup (as mechanical blending technique) for the development of PBGC in 3D printing applications. But, hitherto, little has been reported on chemical-assisted mechanical blending (CAMB) as solution mixing and melt mixing technique combination for preparation of PBGC. In this work, for preparation of PBGC feedstock filaments, CAMB has been used. Also, the effect of process parameters of TSE on the mechanical, dimensional, morphological, and thermal properties of prepared filament of PBGC have been explored followed by 3D printing. Further, a comparative study has been reported for the properties of prepared filaments with mechanically blended composites. Similarly, the mechanical properties of 3D printed parts of chemically and mechanically blended composites have been compared. The results of tensile testing for CAMB of PBGC show that the filament prepared with 15% BaTiO3 is having maximum peak strength 43.00 MPa and break strength 38.73 MPa. The optical microphotographs of the extruded filaments revealed that the samples prepared at 180°C extruder temperature and 60 r/min screw speed have minimum porosity, as compared to filaments prepared at high extruder temperature. Further, the results of the comparative study revealed that the filaments of CAMB composites show better mechanical properties as compared to the filaments of mechanically mixed composites. However, the dimensional properties were almost similar in both cases. It was also found that the CAMB composites have better properties at low processing temperature, whereas mechanically blended composites show better results at a higher temperature. While comparing 3D printed parts, tensile strength of specimens fabricated from CAMB was more than the mechanically blended PBGC.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 255 ◽  
Author(s):  
Kevin Carpenter ◽  
Ali Tabei

One of the most appealing qualities of additive manufacturing (AM) is the ability to produce complex geometries faster than most traditional methods. The trade-off for this advantage is that AM parts are extremely vulnerable to residual stresses (RSs), which may lead to geometrical distortions and quality inspection failures. Additionally, tensile RSs negatively impact the fatigue life and other mechanical performance characteristics of the parts in service. Therefore, in order for AM to cross the borders of prototyping toward a viable manufacturing process, the major challenge of RS development must be addressed. Different AM technologies contain many unique features and parameters, which influence the temperature gradients in the part and lead to development of RSs. The stresses formed in AM parts are typically observed to be compressive in the center of the part and tensile on the top layers. To mitigate these stresses, process parameters must be optimized, which requires exhaustive and costly experimentations. Alternative to experiments, holistic computational frameworks which can capture much of the physics while balancing computational costs are introduced for rapid and inexpensive investigation into development and prevention of RSs in AM. In this review, the focus is on metal additive manufacturing, referred to simply as “AM”, and, after a brief introduction to various AM technologies and thermoelastic mechanics, prior works on sources of RSs in AM are discussed. Furthermore, the state-of-the-art knowledge on RS measurement techniques, the influence of AM process parameters, current modeling approaches, and distortion prevention approaches are reported.


Author(s):  
Adam Mihalko ◽  
Robert Michael ◽  
Davide Piovesan

Abstract Due to the accuracy, speed, and ability to produce controllable complex geometries, additive manufacturing has gained traction in the medical industry. Additive manufacturing based on powder binder-jetting allows fabricating composite ceramic artifacts to mimic the physical properties of cortical bone. Given the porous nature of the artifacts their physical properties can be manipulated based on the percentage of solid matrix and adhesive binder. It has been demonstrated that a reduction of porosity via infiltration greatly increases the mechanical properties of the artifact. In this paper experiments are presented investigating the post processing of porous materials using different adhesives to infiltrate the artifact. The resulting saturation and porosity profiles of the produced composite are analyzed.


Author(s):  
Miranda Fateri ◽  
Andreas Gebhardt

Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies applicable for producing complex geometries which are typically expensive or difficult to fabricate using conventional methods. This process has been extensively investigated experimentally for various metals and the fabrication process parameters have been established for different applications; however, fabricating 3D glass objects using SLM technology has remained a challenge so far although it could have many applications. This paper presents a summery on various experimental evaluations of a material database incorporating the build parameters of glass powder using the SLM process for jewelry applications.


Sign in / Sign up

Export Citation Format

Share Document