Jewelry Fabrication via Selective Laser Melting of Glass

Author(s):  
Miranda Fateri ◽  
Andreas Gebhardt

Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies applicable for producing complex geometries which are typically expensive or difficult to fabricate using conventional methods. This process has been extensively investigated experimentally for various metals and the fabrication process parameters have been established for different applications; however, fabricating 3D glass objects using SLM technology has remained a challenge so far although it could have many applications. This paper presents a summery on various experimental evaluations of a material database incorporating the build parameters of glass powder using the SLM process for jewelry applications.

Author(s):  
Mohsen Taheri Andani ◽  
Christoph Haberland ◽  
Jason Walker ◽  
Mohammad Elahinia

It’s well accepted that the thermo-mechanical properties of Nitinol (NiTi) are strongly affected by the material processing. Additive manufacturing has been recently considered as an interesting technique to develop Nitinol devices with sophisticated geometries, which are impossible or very difficult to be produced through typical manufacturing procedures. In the present work, the effect of energy input on the phase transformation temperatures, as the most critical thermal parameters of the shape memory material, of Nitinol parts manufactured by selective laser melting is investigated and discussed.


2019 ◽  
Vol 818 ◽  
pp. 72-76 ◽  
Author(s):  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

Laser based powder bed fusion (LBPF) or selective laser melting (SLM) is making a leap march towards fabricating novel materials with improved functionalities. An attempt has been made here to fabricate hard quasicrystalline composites via SLM, which demonstrates that the process parameters can be used to vary the phases in the composites. The mechanical properties of the composite depend on their constituents and hence can be varied by varying the process parameters. The results show that SLM not only produces parts with improved functionalities and complex shape but also leads to defined phases and tunable properties.


2019 ◽  
Vol 9 (6) ◽  
pp. 1256 ◽  
Author(s):  
Amal Charles ◽  
Ahmed Elkaseer ◽  
Lore Thijs ◽  
Veit Hagenmeyer ◽  
Steffen Scholz

Additive manufacturing provides a number of benefits in terms of infinite freedom to design complex parts and reduced lead-times while globally reducing the size of supply chains as it brings all production processes under one roof. However, additive manufacturing (AM) lags far behind conventional manufacturing in terms of surface quality. This proves a hindrance for many companies considering investment in AM. The aim of this work is to investigate the effect of varying process parameters on the resultant roughness of the down-facing surfaces in selective laser melting (SLM). A systematic experimental study was carried out and the effects of the interaction of the different parameters and their effect on the surface roughness (Sa) were analyzed. It was found that the interaction and interdependency between parameters were of greatest significance to the obtainable surface roughness, though their effects vary greatly depending on the applied levels. This behavior was mainly attributed to the difference in energy absorbed by the powder. Predictive process models for optimization of process parameters for minimizing the obtained Sa in 45° and 35° down-facing surface, individually, were achieved with average error percentages of 5% and 6.3%, respectively, however further investigation is still warranted.


Author(s):  
Jason Walker ◽  
Mohammad Elahinia ◽  
Christoph Haberland

Nitinol’s superelastic and shape memory effects can be used in passive or active actuation systems. Often used in the aerospace industry, the use of Nitinol for actuation is also growing in the biomedical fields and elsewhere. However, the industry currently lacks the ability to produce complex Nitinol actuators, which is strictly limiting its potential. The extreme difficulty of machining Nitinol complicates manufacturing processes. Furthermore, the transformation temperatures which drive Nitinol’s unique behavior are extremely sensitive to the relative concentrations of nickel and titanium. Therefore, exceptionally tight compositional control during production is necessary to guarantee ideal material behavior. Additive manufacturing (AM) is a near-net-shaping technology which allows for the direct fabrication of complex metallic components. In this way, the (lack of) machinability of Nitinol is no longer an issue because no traditional machining is required during fabrication. Using AM also enables production of 3D geometries that are not possible using traditional techniques. Features such as engineered porosity, hollow parts, curved holes and filigree structures are suddenly realizable. Furthermore, direct CAD fabrication reduces the timescale of the concept-to-prototype transition. A major breakthrough in additive manufacturing came with the development of fiber laser technology in the mid-1990’s, which enables direct melting of manufacturing grade metals into fully dense parts. This technology became known as selective laser melting (SLM). Despite its huge potential, SLM of Nitinol has received little attention from the engineering world. In the present work, two different SLM machines (Realzier SLM 100 and Phenix Systems PXM) are used to develop Nitinol components directly from powder. Adjustment and optimization of the process parameters on the product are analyzed and compared.


Author(s):  
Luis E. Criales ◽  
Yiğit M. Arısoy ◽  
Tuğrul Özel

A prediction of the 2-D temperature profile and melt pool geometry for Selective Laser Melting (SLM) of Inconel 625 metal powder with a numerically-based approach for solving the heat conduction-diffusion equation was established in this paper. A finite element method solution of the governing equation was developed. A review of the current efforts in numerical modeling for laser-based additive manufacturing is presented. Initially, two-dimensional (2-D) temperature profiles along the scanning (x-direction) and hatch direction (y-direction) are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. The effects of varying laser power, scanning speed and the powder material’s density are analyzed. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. The results are chiefly compared against the published literature on melt pool data. The main goal of this research is to develop a computational tool with which investigation of the importance of various laser, material, and process parameters on the built dimensional quality in laser-based additive manufacturing becomes not only possible but also practical and reproducible.


2021 ◽  
Vol 5 (5) ◽  
pp. 126
Author(s):  
Muhammad Waqas ◽  
Dingyong He ◽  
Hassan Elahi ◽  
Saleem Riaz ◽  
Marco Eugeni ◽  
...  

Additive manufacturing (AM), a 3D printing technique that manufactures components by sequential addition of powder, has massively reshaped the manufacturing and engineering sectors from batch production to manufacturing customized, innovative, state-of-the-art, and sustainable products. Additive manufacturing of aluminum alloys by selective laser melting (SLM) is one of the latest research trends in this field due to the fact of its advantages and vast applications in manufacturing industries such as automobiles and aerospace. This paper investigated the surface and dimensional quality of SLM-built AlSi10Mg parts using a response surface method (RSM) and found the influence of the wall thickness and process parameters (i.e., laser power, scanning speed, hatch distance) on the pieces. Thin-walled test specimens of AlSi10Mg alloy were manufactured with different combinations of process parameters at three wall thicknesses: 1.0 mm, 2.0 mm, and 3.0 mm. The Minitab DOE module was used to create 27 different configurations of wall thickness and process parameters. The samples’ surface roughness and dimensional accuracy were investigated, and the findings were evaluated using the ANOVA technique. The regression model and the ANOVA technique showed high precision and had a particular reference value for practical engineering applications.


2018 ◽  
Vol 284 ◽  
pp. 667-672
Author(s):  
P.A. Lykov ◽  
R.M. Baitimerov

Additive manufacturing (AM) technologies make it possible to produce complex shape metallic objects from powder feedstock. AlSi12 alloy is one of the most widely used materials in selective laser melting (SLM). The large number of technological parameters involved complicate the selection of an SLM mode for obtaining a product with the required structure. The goal of this research was to determine the mode which ensures the material’s low porosity. Nine specimens were fabricated by using different SLM process parameters. The fabricated specimens have different microstructures. The lowest porosity that was achieved is about 0.5%.


2018 ◽  
Vol 1 (90) ◽  
pp. 5-15 ◽  
Author(s):  
M. Król ◽  
J. Mazurkiewicz ◽  
S. Żołnierczyk

Purpose: The investigations have been carried out on 316L stainless steel parts fabricated by Selective Laser Melting (SLM) technique. The study aimed to determine the effect of SLM parameters on porosity, hardness, and structure of 316L stainless steel. Design/methodology/approach: The analyses were conducted on 316L stainless steel parts by using AM125 SLM machine by Renishaw. The effects of the different manufacturing process parameters as power output, laser distance between the point’s melted metal powder during additive manufacturing as well as the orientation of the model relative to the laser beam and substrate on porosity, hardness, microstructure and roughness were analysed and optimised. Findings: The surface quality parts using 316L steel with the assumed parameters of the experiment depends on the process parameters used during the SLM technique as well as the orientation of formed walls of the model relative to the substrate and thus the laser beam. The lowest roughness of 316L SLM parts oriented perpendicularly to the substrate was found when 100 W and 20 μm the distance point was utilised. The lowest roughness for part oriented at 60° relatives to the substrate was observed when 125 W and the point distance 50 μm was employed. Practical implications: Stainless steel is one of the most popular materials used for selective laser sintering (SLM) processing to produce nearly fully dense components from 3D CAD models. Reduction of porosity is one of the critical research issues within the additive manufacturing technique SLM, since one of the major cost factors is the post-processing. Originality/value: This manuscript can serve as an aid in understanding the importance of technological parameters on quality and porosity of manufactured AM parts made by SLM technique.


2016 ◽  
Vol 61 (3) ◽  
pp. 1291-1296 ◽  
Author(s):  
M. Król ◽  
T. Tański

Abstract One of the innovative technology of producing the components is Selective Laser Melting (SLM) belongs to additive manufacturing techniques. SLM technology has already been successfully applied in the automotive, aerospace and medical industries. Despite progress in material flexibility and mechanical performances, relatively poor surface finish still presents a significant weakness in the SLM process. The scope of the present article is the study the influence of selective laser melting parameters such as laser power, scanning speed, exposure time and hatch spacing through additive manufacturing as well as the orientation of the model corresponding to the laser beam on the surface characteristic of the components made from Ti-6Al-4V alloy. By using optimized process parameters, a low surface roughness can be obtained. In research, the machine for the selective laser melting of metal powders Renishaw AM 125 device was used. Based on experiment plan, 32 models were produced, which were examined to define the surface roughness and thus represent an influence of process parameters and the orientation on the model surface quality. The article discusses the fundamental factors determining the roughness that gives invaluable knowledge to improve the surface quality of SLM parts.


Sign in / Sign up

Export Citation Format

Share Document