scholarly journals Morphological and Molecular-Biological Changes in the Coronary Arteries after Stenting

Kardiologiia ◽  
2021 ◽  
Vol 61 (7) ◽  
pp. 79-84
Author(s):  
S. S. Todorov ◽  
V. J. Deribas ◽  
A. S. Kazmin ◽  
S. S. Todorov (jr.)

This review addresses morphological changes in coronary arteries following stenting, which result from damage to the vascular wall. These changes include 1) formation of a thrombus in the site of intimal injury; 2) inflammation; 3) proliferation and migration of smooth muscle cells; 4) formation of extracellular matrix. Each of these pathological processes has specific morpho-biological features. The review shows the role of von Willebrand factor in development of early thrombosis after intimal injury, which provokes activation of the inflammatory response followed by proliferation of smooth muscle cell that synthetize the extracellular matrix. These cellular and intercellular changes are based on overexpression of TGF-β1 protein, which facilitates modulation of various types of smooth muscle cells, including contractile and secretory ones. Issues of fine regulation of cellular and intercellular interactions by apoptosis, activation of mTOR signaling molecules, and microRNA are still understudied. Dynamic changes in drug-coated stents during development of neoatherosclerosis and late thrombosis remain not elucidated. Current reports show that initial mechanisms triggering pathological regenerative and hyperplastic processes that result in coronary restenosis in the area of implanted stents may form early (first hours or days) after stenting. Most studies were performed on experimental rather than on autopsy material, which does not allow fully unbiased interpretation of obtained data. Studying dynamics of morphological and molecular changes in coronary arteries after stenting, including on autopsy material, will allow one to express an opinion on the risk of postoperative thrombosis and restenosis.

Author(s):  
Daniel Andrés Osório ◽  
Silvio Roberto Consonni ◽  
Aline Mara dos Santos ◽  
Hernandes F. Carvalho

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


1998 ◽  
Vol 35 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Patricia Sansilvestri-Morel ◽  
Isabelle Nonotte ◽  
Marie-Pierre Fournet-Bourguignon ◽  
Alain Rupin ◽  
Jean-Noël Fabiani ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Li ◽  
Lei Cao ◽  
Cang-Bao Xu ◽  
Jun-Jie Wang ◽  
Yong-Xiao Cao

Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. The present study investigated the effects of mmLDL on the expression of endothelin type A () receptors in coronary arteries. Rat coronary arteries were organ-cultured for 24 h. The contractile responses were recorded using a myographic system. receptor mRNA and protein expressions were determined using real-time PCR and western blotting, respectively. The results showed that organ-culturing in the presence of mmLDL enhanced the arterial contractility mediated by the receptor in a concentration-dependent and time-dependent manner. Culturing with mmLDL (10 μg/mL) for 24 h shifted the concentration-contractile curves toward the left significantly with increased of from control of and significantly increased receptor mRNA and protein levels. Inhibition of the protein kinase C, extracellular signal-related kinases 1 and 2 (ERK1/2), or NF-κB activities significantly attenuated the effects of mmLDL. The c-Jun N-terminal kinase inhibitor or the p38 pathway inhibitor, however, had no such effects. The results indicate that mmLDL upregulates the receptors in rat coronary arterial smooth muscle cells mainlyviaactivating protein kinase C, ERK1/2, and the downstream transcriptional factor, NF-κB.


Sign in / Sign up

Export Citation Format

Share Document