scholarly journals Novel view of the architecture of the non-catalytic n-terminal region of ATP-dependent lona proteases

2010 ◽  
Vol 56 (3) ◽  
pp. 412-419
Author(s):  
T.V. Rotanova ◽  
E.E. Melnikov

ATP-Dependent Lon proteases are components of the protein quality control system, which maintains a keeping of cellular proteome. Lon family consists of two subfamilies A and B, differing in subunit architecture and intracellular location. The reinterpretation of the domain organization of the non-catalytic N-terminal region of ATP-dependent LonA proteases is proposed. Using Escherichia coli LonA protease (EcLon) as an example it has been shown that a fragment (αN-domain), which is located between the N-terminal domain and the ААА+ module of that protein, is similar to the α1-domain of the first ААА+ module of chaperone-disaggregase ClpB. A coiled-coil (СС) region included in the αN-domain of LonA is similar to the M domain of ClpB chaperones, which is inserted into the α1-domain. This region is suggested to adopt the structure similar to the propeller-like (PL) domain. The typical architecture of the N-terminal region of LonA proteases is postulated to be characterized by the obligatory presence of a PL domain, included in the αN-domain, but may vary in the length and topology of the preceding N-terminal domain.

2020 ◽  
Vol 12 ◽  
Author(s):  
Riccardo Cristofani ◽  
Valeria Crippa ◽  
Maria Elena Cicardi ◽  
Barbara Tedesco ◽  
Veronica Ferrari ◽  
...  

1995 ◽  
Vol 309 (3) ◽  
pp. 951-957 ◽  
Author(s):  
T S Tsuruda ◽  
M H Watson ◽  
D B Foster ◽  
J J J C Lin ◽  
A S Mak

We have reported previously that each smooth-muscle caldesmon binds predominantly to a region within residues 142-227 of tropomyosin, but a weaker binding site also exists at the N-terminal region of tropomyosin [Watson, Kuhn, Novy, Lin and Mak (1990) J. Biol. Chem. 265, 18860-18866]. In view of recent evidence for the presence of tropomyosin-binding sites at both the N- and C-terminal domains of caldesmon, we have studied the binding of the N- and C-terminal fragments of human fibroblast caldesmon expressed in Escherichia coli to tropomyosin and its CNBr fragments. The N-terminal fragment, CaD40 (residues 1-152), binds tropomyosin, but the interaction is mostly abolished in the presence of actin. CaD40 binds strongly to Cn1B(142-281) of tropomyosin, but weakly to Cn1A(11-127). The C-terminal fragment, CaD39, which corresponds to residues 443-736 of gizzard caldesmon, binds tropomyosin, and the interaction is enhanced by actin. CaD39 binds to both Cn1A(11-127) and Cn1B(142-281) of tropomyosin. Our results suggest that the N-terminal domain of caldesmon interacts with the C-terminal half of one tropomyosin molecule, whereas the C-terminal domain binds to both N- and C-terminal regions of the adjacent tropomyosin molecule along the actin filament. In addition, the binding of the N-terminal domain of caldesmon to the actin-tropomyosin filament is weak, which may allow this domain to project off the thin filament to interact with myosin.


2021 ◽  
Vol 23 (1) ◽  
pp. 345
Author(s):  
Yaping Liu ◽  
Runrong Ding ◽  
Ze Xu ◽  
Yuan Xue ◽  
Dongdong Zhang ◽  
...  

Alzheimer’s disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy–lysosome system (ALS) and the ubiquitin–proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.


2006 ◽  
Vol 49 (5) ◽  
pp. 500-507 ◽  
Author(s):  
Daniela D. Pollak ◽  
Julius John ◽  
Hermann Bubna-Littitz ◽  
Angela Schneider ◽  
Harald Hoeger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document