scholarly journals Remote sensing of surface roughness and top soil moisture of bare tilled soil with an X-band radar.

1979 ◽  
Vol 27 (4) ◽  
pp. 284-296
Author(s):  
A.J. Koolen ◽  
F.F.R. Koenigs ◽  
W. Bouten

Using a ground-based radar with a single frequency in the X-band (3 cm wavelength), the feasibility of mapping soil surface roughness and top soil moisture content was investigated. In order to cover the broad range of bare-soil appearances which occur in agricultural practice, the field treatment included a number of tillage types, several degrees of soil structure change which normally occur after tillage, and different soil moisture content. Different angles between the ray beam and the irradiated land (grazing angles) were used. The shape of radar return ( gamma )-grazing angle curves were entirely determined by soil surface roughness, while their positions depended on moisture content. Although this type of radar had limited discrimination ability, mapping of roughness and moisture may be possible under certain conditions. (Abstract retrieved from CAB Abstracts by CABI’s permission)

1994 ◽  
Vol 4 (4) ◽  
pp. 225 ◽  
Author(s):  
JC Valette ◽  
V Gomendy ◽  
J Marechal ◽  
C Houssard ◽  
D Gillon

The aim of this study was to analyse the effects of duff thickness and moisture content, and of soil moisture content on the transfer of heat in the soil. The experimental design used intact soil blocks with their duff layer, subjected to controlled fires of variable very low intensities of up to 100 kW m-1. The fuel on the surface was composed of needles and twigs of Pinus pinaster. The maximum temperatures measured within the fuel were of the order of 650 degrees C and were independent of the fireline intensities. For fires with fireline intensity of the order of 30 kW m-1, the presence of the duff layer reduced from 330 degrees C the temperature rise at the soil surface. Duff thickness played only a secondary role, but increasing moisture content reinforced its insulating effect, so that the temperature rise was 2.5 times less at 1 cm depth in the duff when the moisture content exceeded 70% dry weight, than when the moisture content was less than 30%. For more intense fires (> 50 kW m-1) that produced longer-lasting surface heating, duff thickness and moisture content played an important role in significantly reducing the temperature rise at the soil surface (range 140 degrees C to 28 degrees C). Because of low soil thermal conductivity, temperature attenuation with increasing depth was noticed. In the case of low intensity fires (< 30 kW m-1) in the absence of a duff layer, the maximum temperatures were reduced from 350 degrees C at the surface to 7 degrees C at 3.5 cm. The temperature rise in the soil decreased with depth according to a negative exponential relation. The rate constant of this relation was greater when the initial surface temperature and the soil moisture content were higher. For the soil studied, and under the moisture conditions encountered (between 7 and 19% of dry weight), the rate constant could be predicted with acceptable precision (r2 = 0.67), if the surface soil temperature rise and the soil moisture content were known. In these experimental fires, which were carried out when the air temperature did not exceed 20 degrees C, lethal temperatures (> 60 degrees C) were measured in the upper few centimetres of the duff layer in very low-intensity fires, and in the upper few centimetres of the soil (where nutrients are most concentrated and biological activity most intense) in the slightly more intense fires. The fire intensities were always very moderate, and of the order of magnitude df those encountered in the prescribed burns conducted on fuel-breaks of the french Mediterranean area. Their impact on the surface of the forest soil, in terms of lethal temperatures transmitted to the horizon rich in organic matter, are not negligible. In contrast, below 3 to 5 cm depth, prescribed burns, conducted under the conditions of the experiments, would not lead to significant change to nutrients or microfaunal or microfloral activity; in particular, root tips would not be subjected to heat stress sufficient to kill them.


2005 ◽  
Vol 48 (5) ◽  
pp. 1979-1986 ◽  
Author(s):  
A. L. Kaleita ◽  
L. F. Tian ◽  
M. C. Hirschi

2018 ◽  
Vol 10 (10) ◽  
pp. 1667 ◽  
Author(s):  
Omer Shamir ◽  
Naftaly Goldshleger ◽  
Uri Basson ◽  
Moshe Reshef

Soil moisture content (SMC) down to the root zone is a major factor for the efficient cultivation of agricultural crops, especially in arid and semi-arid regions. Precise SMC can maximize crop yields (both quality and quantity), prevent crop damage, and decrease irrigation expenses and water waste, among other benefits. This study focuses on the subsurface spatial electromagnetic mapping of physical properties, mainly moisture content, using a ground-penetrating radar (GPR). In the laboratory, GPR measurements were carried out using an 800 MHz central-frequency antenna and conducted in soil boxes with loess soil type (calcic haploxeralf) from the northern Negev, hamra soil type (typic rhodoxeralf) from the Sharon coastal plain, and grumusol soil type (typic chromoxerets) from the Jezreel valley, Israel. These measurements enabled highly accurate, close-to-real-time evaluations of physical soil qualities (i.e., wave velocity and dielectric constant) connected to SMC. A mixture model based mainly on soil texture, porosity, and effective dielectric constant (permittivity) was developed to measure the subsurface spatial volumetric soil moisture content (VSMC) for a wide range of moisture contents. The analysis of the travel times for GPR reflection and diffraction waves enabled calculating electromagnetic velocities, effective dielectric constants, and spatial SMC under laboratory conditions, where the required penetration depth is low (root zone). The average VSMC was determined with an average accuracy of ±1.5% and was correlated to a standard oven-drying method, making this spatial method useful for agricultural practice and for the design of irrigation plans for different interfaces.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1731 ◽  
Author(s):  
Michał Śpitalniak ◽  
Krzysztof Lejcuś ◽  
Jolanta Dąbrowska ◽  
Daniel Garlikowski ◽  
Adam Bogacz

Climate change induces droughts that are becoming more intensive and more frequent than ever before. Most of the available forecast tools predict a further significant increase in the risk of drought, which indicates the need to prepare solutions to mitigate its effects. Growing water scarcity is now one of the world’s leading challenges. In agriculture and environmental engineering, in order to increase soil water retention, soil additives are used. In this study, the influence of a newly developed water absorbing geocomposite (WAG) on soil water retention and soil matric potential was analyzed. WAG is a special element made from geotextile which is wrapped around a synthetic skeleton with a superabsorbent polymer placed inside. To describe WAG’s influence on soil water retention and soil matric potential, coarse sand, loamy sand, and sandy loam soils were used. WAG in the form of a mat was used in the study as a treatment. Three kinds of samples were prepared for every soil type. Control samples and samples with WAG treatment placed at depths of 10 cm and 20 cm were examined in a test container of 105 × 70 × 50 cm dimensions. The samples had been watered and drained, and afterwards, the soil surface was heated by lamps of 1100 W total power constantly for 72 h. Soil matric potential was measured by Irrometer field tensiometers at three depths. Soil moisture content was recorded at six depths: of 5, 9, 15, 19, 25, and 30 cm under the top of the soil surface with time-domain reflectometry (TDR) measurement devices. The values of soil moisture content and soil matric potential were collected in one-minute steps, and analyzed in 24-h-long time steps: 24, 48, and 72 h. The samples with the WAG treatment lost more water than the control samples. Similarly, lower soil matric potential was noted in the samples with the WAG than in the control samples. However, after taking into account the water retained in the WAG, it appeared that the samples with the WAG had more water easily available for plants than the control samples. It was found that the mechanism of a capillary barrier affected higher water loss from soil layers above those where the WAG had been placed. The obtained results of water loss depend on the soil type used in the profile.


1983 ◽  
Vol 61 (1) ◽  
pp. 241-255 ◽  
Author(s):  
K. A. Baldwin ◽  
M. A. Maun

Measurements were obtained of relative abundance of vegetation, edaphic properties, and microclimate characteristics of some initial stages of the Lake Huron sand-dune sequence at Pinery Provincial Park, Ont. Of the five dune habitats sampled, the oldest (transition zone) was distinguishable from the rest on the basis of greater diversity and abundance of vegetation, higher organic matter content, higher moisture-retaining capacity, enhanced concentrations of available K+ and Mg2+, depleted levels of Ca2+ in the surface soil, reduced air turbulence, and slightly higher air temperatures. The midsummer microclimate of the open dune habitat was characterized by extremely high day temperatures at the soil surface (5 cm) with large diurnal temperature fluctuations. Soil moisture content was generally low in the surface layers of the soil, but at depths greater than 10 cm, it was always plentiful (> 2.5% of soil by weight). Canonical variates analysis showed that the transition zone habitat (800 years old) was separated from younger ones (first dune ridge, slack, high beach) on the first canonical variate (V1), which accounted for about 50% of the total dispersion in the data. The discrimination of the transition zone microclimate on V1 was best characterized by difference in soil moisture content at shallow depths (5 and 10 cm) and wind velocity at 50 and 150 cm above the soil surface.


Sign in / Sign up

Export Citation Format

Share Document