scholarly journals Estimating the chemical composition of the soil solution of glasshouse soil. 2. Relationships between the compositions of soil solution and aqueous extracts.

1989 ◽  
Vol 37 (4) ◽  
pp. 323-334
Author(s):  
J. van den Ende

The possibilities of estimating ECs and K, Na, Ca, Mg, NO3, Cl and SO4 contents of press extracts of glasshouse soils from corresponding analytical data of saturation extracts or 1:5 by-weight extracts were examined through construction of regression equations. The analytical data of saturation and 1:5 by-weight extracts were and were not corrected by multiplication with dilution factors, these being the ratios between the water contents of the soils employed to obtain the extracts and the water contents of the soils at field capacity. The dilution factors used were not derived from actual water contents but from water contents assessed on the basis of loss-on-ignition values. In a number of cases, the estimation technique could be improved through introduction of one or two extra variables, such as the dilution factor, the corrected SO4 content of the extract, the water content of the field-moist soil and the ratio between the mass fractions clay and loss-on-ignition. (Abstract retrieved from CAB Abstracts by CABI’s permission)

1988 ◽  
Vol 36 (3) ◽  
pp. 275-282
Author(s):  
J. van den. Ende

Water contents of soils at field capacity and at saturation could be accurately estimated with the use of regression equations in which loss-on-ignition was the independent variable. Multiple regression equations in which organic-matter and clay contents were the independent variables did not have a higher predictive value. The regression coefficients in equations for estimating water contents of saturated pastes obtained from air-dry soil samples amount to about 80% of the corresponding coefficients for saturated pastes obtained from field-moist soil samples. The clay fractions were found to contribute much more to the water contents of saturated soil pastes than to those of soils at field capacity. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2005 ◽  
Vol 54 (1-2) ◽  
pp. 121-138
Author(s):  
Julianna Csillag ◽  
András Lukács ◽  
Géza Pártay ◽  
Krisztina Rajkainé Végh

Experiments were carried out on an acidic, clay loam soil (Ragály) to study the release of potassium into the soil solution as affected by soil acidification and soil water content. Two replicates of air-dried samples were acidified with HCl solutions to various water contents: soil suspensions (at 1:10, 1:5, 1:2.5 and 1:1 soil:water ratios) and wet soil samples having water potentials of -0.1 kPa, -20 kPa and -100 kPa were prepared. Constant acid loads, corresponding to 0, 5, 12.5, 25, 37.5, 50 and 62.5 mmol H+/kg soil were applied to each soil water content series. At field capacity acid loads of 75, 87.5 and 100 mmol H+/kg soil were also applied. After one week of incubation the liquid phases were extracted by centrifugation with a rotor speed corresponding to -1500 kPa (equal to the conventional wilting point of plants). At constant soil water content, the potassium concentration in the liquid phase of the soil (cK) increased with decreasing pH according to an exponential relationship (cK = a e-bpH). The slope (b) was higher at low soil water contents. At constant acid load, the potassium concentration in the liquid phase increased with decreasing soil water content (q) according to a hyperbolic relationship cK = a' + b' {1 / (qq-qq')}, where q' denotes the gravimetric soil water content at -1500 kPa water potential. The slope (b') was higher at lower pH values. The combined effect of the matrix of changing acid load and soil water content gave a three-dimensional surface characterizing the plant available potassium concentration over a wide range of these parameters: ln cK (mg/L) = 4.79 - 0.66 pH + 9.79 {1/(qq-qq'); R2 = 0.87. A finely ground (<100 mmm) feldspar mixture (80% orthoclase + 20% albite) was added as potassium source to the air-dried samples of a slightly acidic sandy soil in 0:1, 1:3 and 1:1 feldspar:soil ratios (Somogysárd). Two replicates of the control and feldspar-enriched soil samples were moistened to field capacity with HNO3 solutions of 0, 0.25, 0.50, 0.75 and 1.0 mol/L concentrations (equal to acid loads of 0, 50, 100, 150 and 200 mmol H+/kg soil). The soil solution was extracted with the above centrifugation method. After feldspar application, the potassium concentration in the soil solution increased many times as compared with the control. Due to acid treatment the soil pH decreased by three units and the potassium concentration in the soil solution increased according to a saturation curve. Due to a two-unit decrease in soil pH, the potassium concentration increased threefold in the control and sixfold in feldspar-enriched (1:3) soil. This decrease in pH may take place due to root activity, promoting the dissolution of potassium minerals, and increasing potassium availability in the rhizosphere. The impact of drying-rewetting was also studied at the above feldspar:soil ratios. After one week of incubation the samples were kept in open vessels for one year, irrigated weekly with distilled water to field capacity, then the soil solution was extracted by centrifugation. The concentrations were compared to those measured in a soil solution obtained from soil not subjected to the drying-rewetting procedure. The potassium concentration decreased in the liquid phase of the soil with no added feldspar: presumably it entered more strongly bounded forms during the drying-rewetting cycles. In the feldspar-enriched soil, however, the potassium concentration in the soil solution increased, which may be the consequence of the slow dissolution of the feldspar mineral.


1988 ◽  
Vol 36 (3) ◽  
pp. 265-274
Author(s):  
J. van den. Ende

The relationship between water contents at saturation and at field capacity was determined in soils from 75 glasshouses in the Netherlands. Sandy, loamy and peaty soils were equally represented. Water contents of soils at sampling time were found to correspond closely with those at field capacity. Water contents of saturated pastes obtained from field-moist soil samples were higher than those of saturated pastes obtained from soil samples dried previously. For the relationships between water contents of field-moist soil samples and of saturated pastes obtained from field-moist and dried soil samples, correlation coefficients of 0.986 and 0.985, respectively, were found. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1989 ◽  
Vol 37 (4) ◽  
pp. 311-322
Author(s):  
J. van den Ende

Press extracts, saturation extracts and 1:5 by-weight extracts obtained from 75 glasshouse soils were analysed for EC and K, Na, Ca, Mg, NO3, Cl, SO4, HCO3 and P. The analytical data are discussed, with the exception of the HCO3 and P contents of press extracts, as these were much lower than the HCO3 and P contents of equilibrium solutions of the soils. The water-saturated soil pastes from which the saturation extracts were obtained were prepared from both field-moist and air-dry soil. They stood overnight at 25 degrees C before filtration. This overnight storage was unsatisfactory for NO3, as it induced denitrification in the saturated pastes prepared from air-dry soil. Hence, for the determination of NO3, saturation extracts were prepared from air-dry soil, with pastes standing only two hours before filtration. The suspensions from which the 1:5 by-weight extracts were obtained were prepared from air-dry soil and stood overnight at 25 degrees C before filtration. Again overnight storage proved unsatisfactory because of denitrification. Thus, for the determination of NO3, 1:5 suspensions were prepared, this time with a storage period of only two hours. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1987 ◽  
Vol 27 (4) ◽  
pp. 571 ◽  
Author(s):  
MDA Bolland ◽  
MJ Baker

In pot experiments, levels of superphosphate incorporated through the whole soil were incubated for 30 days in 2 lateritic soils from south-western Australia at 1 of the following 5 soil water contents: air-dry for 30 days, at field capacity for 10 or 30 days, and flooded for 10 or 30 days. The soils were then air-dried for 30 days and the residual value of the superphosphate relative to freshly applied superphosphate was measured using 30-day-old triticale (x Triticosecale cv. Tyalla) and wheat (Triticum aestivum cv. Gamenya) plants. Soil samples were collected just before sowing from each pot for measurement of bicarbonate-extractable phosphorus (P) levels which were compared with the DM yield of plant tops. For all treatments there was a common relationship between the P concentration (data not shown) or P content in the tops and the DM yield. This shows that the treatments can be considered as different dilutions of the same fertiliser. Less P was taken up by plants as the moisture content and period of contact with moist soil increased, and this limited yield. The effectiveness of superphosphate incubated in dry soil was similar to the effectiveness of freshly applied superphosphate. Incubation in moist soil reduced the effectiveness of superphosphate for plant growth, by about 50% for soils incubated at field capacity and 70% for flooded incubated soils. As calculated from the P content of plant tops, the effectiveness of superphosphate incubated in dry soil was similar to the effectiveness of freshly applied superphosphate, and the effectiveness of superphosphate decreased by about 55% for soils incubated at field capacity and 75% for flooded incubated soils. The amount of P extracted by sodium bicarbonate from soil sampled just before sowing was also influenced by the incubation treatments, and decreased in the following order: freshly applied = air dry incubated > field capacity incubated > flooded incubated. Thus the bicarbonate-soluble P extracted from the soil qualitatively paralleled the yield results. However, compared with the yield results, the decreases were not as marked. When the bicarbonate-extracted P results were compared with subsequent yields of triticale or wheat, separate calibration curves were required for the different incubation treatments.


1968 ◽  
Vol 22 (6) ◽  
pp. 749-752 ◽  
Author(s):  
Isoo Masuda ◽  
Tamon Inouye

An improved method for the tabulation of analytical data, obtained by addition and successive dilution procedures for spectrochemical analysis, is presented. The author's previous work shows that the solution of the first approximation diverges at some dilution factor smaller than unity when the slope of the working curve of added series is greater than that of unadded series. By obtaining the distance between this position and the origin, and taking it as a correction factor for zero-order approximation, tabulation of the analytical value, in the case of β>α, is carried out. One parameter of the calculation is deleted by normalizing the spectral intensity; therefore, the tabulation can be simplified.


Author(s):  
MUHAMMAD ASLAM ALI ◽  
SANJIT CHANDRA BARMAN ◽  
MD. ASHRAFUL ISLAM KHAN ◽  
MD. BADIUZZAMAN KHAN ◽  
HAFSA JAHAN HIYA

Climate change and water scarcity may badly affect existing rice production system in Bangladesh. With a view to sustain rice productivity and mitigate yield scaled CH4 emission in the changing climatic conditions, a pot experiment was conducted under different soil water contents, biochar and silicate amendments with inorganic fertilization (NPKS). In this regard, 12 treatments combinations of biochar, silicate and NPKS fertilizer along with continuous standing water (CSW), soil saturation water content and field capacity (100% and 50%) moisture levels were arranged into rice planted potted soils. Gas samples were collected from rice planted pots through Closed Chamber technique and analyzed by Gas Chromatograph. This study revealed that seasonal CH4 emissions were suppressed through integrated biochar and silicate amendments with NPKS fertilizer (50–75% of the recommended doze), while increased rice yield significantly at different soil water contents. Biochar and silicate amendments with NPKS fertilizer (50% of the recommended doze) increased rice grain yield by 10.9%, 18.1%, 13.0% and 14.2%, while decreased seasonal CH4 emissions by 22.8%, 20.9%, 23.3% and 24.3% at continuous standing water level (CSW) (T9), at saturated soil water content (T10), at 100% field capacity soil water content (T11) and at 50% field capacity soil water content (T12), respectively. Soil porosity, soil redox status, SOC and free iron oxide contents were improved with biochar and silicate amendments. Furthermore, rice root oxidation activity (ROA) was found more dominant in water stress condition compared to flooded and saturated soil water contents, which ultimately reduced seasonal CH4 emissions as well as yield scaled CH4 emission. Conclusively, soil amendments with biochar and silicate fertilizer may be a rational practice to reduce the demand for inorganic fertilization and mitigate CH4 emissions during rice cultivation under water stress drought conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
R. Bayuaji ◽  
M. F. Nuruddin

This research explains the results of an investigation carried out to understand the influence of a microwave incinerated rice husk ash (MIRHA) powder on foamed concrete (FC) hydration. The experimental work was designed using the Taguchi approach. This method was selected to have a target for the optimum working conditions of the parameter that affects some physical properties of concrete mixtures. The loss on ignition (LOI) method was used to establish the nonevaporable water (wn) content at all selected ages of hydration. It was observed that the MIRHA powder showed lower nonevaporable water contents than the normal FC, indicating that MIRHA powder facilitated enhancement in FC hydration. The optimum FC properties were achieved at 10% MIRHA composition as proven from the highest compressive strength. This level corresponds to the highest values in change in nonevaporable water and degree of hydration.


Wetlands ◽  
1999 ◽  
Vol 19 (3) ◽  
pp. 709-714 ◽  
Author(s):  
Mark H. Sherfy ◽  
Roy L. Kirkpatrick

Sign in / Sign up

Export Citation Format

Share Document