Techno-Economic Feasibility of Energy Supply of Remote Zone Family House in Jordan Badia by Photovoltaic System and Diesel Generators

2016 ◽  
Vol 4 (2) ◽  
pp. 137-142
Author(s):  
Mohammad Al-Smairan ◽  
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 431
Author(s):  
Nur Najihah Abu Bakar ◽  
Josep M. Guerrero ◽  
Juan C. Vasquez ◽  
Najmeh Bazmohammadi ◽  
Muzaidi Othman ◽  
...  

Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Yee Teoh ◽  
Say Yen Khu ◽  
Chee Wei Tan ◽  
Ing Hui Hii ◽  
Kai Wee Cheu

A 1 MW grid-connected PV system is studied and analyzed in this project using the National Renewable Energy Laboratory’s HOMER simulation software. The economic feasibility of the system in a small industry area of Malacca, Rembia in Malaysia, is investigated. The aim of the proposed PV system is to reduce the grid energy consumption and promote the use of renewable energy. In this paper, the emphasis is placed on the reduction of greenhouse gases emission. HOMER is capable of performing simulation on renewable energy systems as well as system optimization, in which, the optimization is based on the available usage data and the renewable energy data, such as solar irradiance and temperature. In addition, HOMER can perform sensitivity analysis according to different assumptions of uncertainty factors to determine its impact on the studied system and also the per unit energy cost. Finally, the most suitable or the best configuration system can be identified based on the requirements and constraints.


2017 ◽  
Vol 32 (1) ◽  
pp. 57
Author(s):  
Francisca Valdelice Pereira Silva ◽  
Hernandes Oliveira Feitosa ◽  
Claudio Faustino Pereira ◽  
João Alvino Sampaio Silva ◽  
Erialdo Oliveira Feitosa

Atualmente há uma preocupação na utilização de energia solar como meios alternativos, tendo em vista a viabilidade para implantação dos sistemas fotovoltaicos. Sendo de extrema importância nos tempos atuais devido à necessidade de utilização de novas fontes de energia renováveis. O objetivo desse trabalho é analisar a viabilidade econômica do uso da energia solar na agricultura familiar irrigada no município de Barbalha. O trabalho foi desenvolvido a partir de dados coletados na Estação Climatológica, localizada em Barbalha, numa série histórica de 30 anos, esses dados foram inserido num programa computacional Retscreen para analisar a viabilidade de projetos, foi feita uma simulaçao do sistema fotovoltaico para geração de energia acionando um conjunto motobomba de 1,0 cv para transportar água a uma caixa com capacidade de 1000 l á 6 m de altura, em seguida será realizada a irrigação por gotejamento de forma gravitacional numa área de 1 há cultivado com milho. Os resultados foram que o sistema só terá um retorno financeiro em 18,5 anos, passando essa energia solar para os agricultores verificamos que somando todos os custos do agricultor será de R$ 7710,00 com uma receita bruta de R$ 11963,52 durante dez meses período em que se podem cultivar dois ciclos de milho irrigado, obtendo uma receita liquida de R$ 4253,52. Assim, o agricultor poderá pagar o investimento da energia fotovoltaica em menos tempo. O sistema mostra-se vantajoso nestes aspectos e abre uma interessante perspectiva de aproveitamento mais eficiente da energia solar na irrigação.Palavras-chave: energia solar; sistemas fotovoltaicos; viabilidade econômica. SOLAR ENERGY POTENTIAL FOR IRRIGATION IN THE MUNICIPALITY OF BARBALHA-CEAbstract: Currently there is concern in the use of solar energy as alternative means in order to implement the viability of PV systems. It is of paramount importance in the present times due to the necessity of use of new renewable energy sources. The aim of this study is to analyze the economic feasibility of using solar energy in irrigated family farming in the municipality of Barbalha. The work was developed from data collected in the Climatological Station, located in Barbalha, a historical series of 30 years, this data is inserted into a computer program Retscreen Software to analyze the feasibility of projects, it was made a Simulation of the photovoltaic system for generating energy driving a pump of 1.0 hp to carry water to a box with 1000 l capacity with 6 m high, then will be held drip irrigation of gravity form an area of 1 is cultivated with milho.Os results were the system will only have a financial return approximately 18.5 years, passing this energy for farmers we found that adding all the farmer's cost will be R $ 7,710.00 with gross revenues of R $ 11,963.52 for ten month period in that can grow two cycles of irrigated corn, obtaining a net income of R $ 4,253.52. Thus, the farmer can afford the investment of photovoltaics in less time. The system seems advantageous in these aspects and opens an interesting perspective more efficient use of solar energy for irrigation. Keywords: solar energy; photovoltaics; economic viabilit.


Author(s):  
Mohamad Kharseh ◽  
Holger Wallbaum

The current work investigates how adding a battery of optimal capacity to a grid-connected photovoltaic (PV) system can improve its economic feasibility. Also, the effect of different parameters on the feasibility of the PV system was evaluated. The OBC was determined for different saving targets of the annual electricity consumption of the chosen building. For this aim, real electricity consumption data of a residential building in Landskrona, Sweden, was used as energy consumption profile. Solar World SW325XL, which is a monocrystalline solar panel, was selected as PV panels. The calculations were performed under the metrological and economic conditions of southern Sweden. Different working parameters (WP)were considered (prices of the battery, feed-in tariffs, and saving targets). The performed calculations show that the optimal battery capacity (OBC), in which the payback time (PBT) of the system is maximized, strongly depends on the WP. The proper selection of the battery can considerably increase the economic feasibility of the PV system in southern Sweden. However, in some cases, using battery can have a negative impact on the PBT of the system. The results show that the electricity price, the module price, the inverter price, and the inverter lifetime have the highest effect on the PBT.


Author(s):  
Carolus Boromeus Rudationo ◽  
Bangun Novianto ◽  
Erkata Yandri ◽  
Herry Susanto ◽  
Roy Hendroko Setyobudi ◽  
...  

The availability of thin-frameless solar panels on the market today makes the installation of rooftop Photovoltaic (RPVS) systems more attractive. The purpose of this research is to analyze financially the use of thinframeless solar panels for on-grid RPVS by household electricity customers in Indonesia. The investment cost, the maintenance costs, and the electricity cost savings were involved for the financial analysis, such as Internal Rate of Return (IRR), Net Present Value (NPV), and Pay Back Period (PBP). The calculation is carried out for ideal conditions, the direction of a non-ideal rooftop and the yearly increase of electricity prices is 15 %. The analysis results show that the minimum available rooftop area is still sufficient for the rooftop area needs for solar panel placement, the thin solar panels are safer than standard solar panels, and savings on electricity payments for the return on investment of the RPVS is to be attractive with the IRR > 12 %. The average investment cost of the non-ideal condition is 8 % higher than the ideal condition. This study provides an overview to the policymakers and developers in exploiting the potential of RPVS, especially in Indonesia. For future research directions, this study needs to analyze the technical and economic feasibility of using hybrid smart-grid technology with batteries.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5476
Author(s):  
Sławomir Zator ◽  
Waldemar Skomudek

This article presents a case study of a single-family house, whose current energy source is electricity only. Nine years ago, the heat source for the heating system and domestic hot water was an oil boiler, which was changed to an air–water heat pump. Four years ago, when Poland formed the basis of the prosumer market, the first photovoltaic system was established. It was expanded in the following years. In this work are presented the impact of using a heat accumulator on the coefficient of performance of the heat pump, the self-consumption of energy from the photovoltaic system, and the cost of purchasing energy. Comparative calculations were made, with the demand-side management (DSM) active on work days, and on free days (weekends and public holidays) it was not. Attention was paid to the self-consumption factor depending on the algorithms used in an energy meter. The prosumer market in Poland was also described. The calculations described the house as having an annual energy self-consumption from photovoltaic about 6% higher than average values obtained in buildings with heat pumps. Simultaneously, due to energy storage in heat and the load shifting in the multi-zone tariff, the cost of purchasing energy was 47% lower than in a single-zone tariff (without heat storage and load shifting).


Sign in / Sign up

Export Citation Format

Share Document