scholarly journals Global Trends and Directions of Development of Industrial Robots

2020 ◽  
Vol 11 (3) ◽  
pp. 294-319
Author(s):  
A. E. Varshavsky ◽  
V. V. Dubinina

Purpose: the main purpose of this article is to analyze the main trends and directions of development of industrial robots, as well as the problems associated with their distribution. To achieve these goals, the following tasks were solved: analysis of the dynamics of the stock of industrial robots, the structure of the stock of robots by region (Europe, America, Asia / Australia), as well as the annual volumes and structure of world sales of robots by key industries; analysis of the main tasks of industrial robots, performed by them in these industries, and the directions of their use; analyze the dynamics of the robot fleet by industry in different countries (Japan, USA, South Korea, China, Germany, etc.); analysis of indicators and problems of using industrial robots in Russia.Methods: the research methodology consists in a comparative analysis of the use of industrial robots in different industries (automotive, food, chemical, electronic, etc.) based on statistical data by country. A systematic approach, tabular and graphical interpretation of information was applied, analysis of the dynamics of the levels of the time series, the calculation of growth indices of indicators.Results: the analysis showed that the use of industrial robots reduces injuries at the workplace, production costs and improves the quality of the final product, productivity, flexibility and safety, which contributes to a significant increase in their use in both developed and developing countries.Conclusions and Relevance: recently, robotization has become available even in non-industrial countries. The introduction of robotization into production processes increases the competitiveness of the economy. The acceleration of digitalization and automation, as well as the ease of use of industrial robots, are driving their proliferation. In Russia, the wider use of industrial robots, the development of the industrial Internet of things and the implementation of digitalization are possible only on the basis of the restoration and further development of mechanical engineering, electronic and other manufacturing industries.

2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8363
Author(s):  
Muhammad Zubair Islam ◽  
Shahzad ◽  
Rashid Ali ◽  
Amir Haider ◽  
Hyungseok Kim

With the inclusion of tactile Internet (TI) in the industrial sector, we are at the doorstep of the tactile Industrial Internet of Things (IIoT). This provides the ability for the human operator to control and manipulate remote industrial environments in real-time. The TI use cases in IIoT demand a communication network, including ultra-low latency, ultra-high reliability, availability, and security. Additionally, the lack of the tactile IIoT testbed has made it more severe to investigate and improve the quality of services (QoS) for tactile IIoT applications. In this work, we propose a virtual testbed called IoTactileSim, that offers implementation, investigation, and management for QoS provisioning in tactile IIoT services. IoTactileSim utilizes a network emulator Mininet and robotic simulator CoppeliaSim to perform real-time haptic teleoperations in virtual and physical environments. It provides the real-time monitoring of the implemented technology parametric values, network impairments (delay, packet loss), and data flow between operator (master domain) and teleoperator (slave domain). Finally, we investigate the results of two tactile IIoT environments to prove the potential of the proposed IoTactileSim testbed.


Robotic systems can already proactively monitor and adapt to changes in a production line. Nowadays, internet of things and robotic systems are key drivers of technological innovation trends.Majorcompanies are now making investments in machine learning-powered approaches to improve in principle all aspects of manufacturing. Connecteddevices, sensors, and similar advancements allow people and companies to do things they wouldn't even dream of in earlier eras.For realizing it time series feature extraction approach is selected.Industrial internet of things solutions are poised to transform many industry verticals including healthcare, retail, automotive, and transport. For many industries, the industrial internet of things has significantly improved reliability, production, and customer satisfaction. The internet of things and robotics arecoming together to create the internet of robotic things. Industrial internet of thingis a subset of industry4.0. Itcan encourage smartness at a bigger level in industrial robots.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2762
Author(s):  
F. Javier Maseda ◽  
Iker López ◽  
Itziar Martija ◽  
Patxi Alkorta ◽  
Aitor J. Garrido ◽  
...  

This paper presents the design and implementation of a supervisory control and data acquisition (SCADA) system for automatic fault detection. The proposed system offers advantages in three areas: the prognostic capacity for preventive and predictive maintenance, improvement in the quality of the machined product and a reduction in breakdown times. The complementary technologies, the Industrial Internet of Things (IIoT) and various machine learning (ML) techniques, are employed with SCADA systems to obtain the objectives. The analysis of different data sources and the replacement of specific digital sensors with analog sensors improve the prognostic capacity for the detection of faults with an undetermined origin. Also presented is an anomaly detection algorithm to foresee failures and to recognize their occurrence even when they do not register as alarms or events. The improvement in machine availability after the implementation of the novel system guarantees the accomplishment of the proposed objectives.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012069
Author(s):  
M Kočiško ◽  
M Pollák ◽  
A Vodilka ◽  
D Paulišin

Abstract At present, the industry is in a phase where there is an effort to maximize the automation of production processes. In many places, human power is being replaced by automated machines and industrial robots. Automation makes it possible to increase work efficiency, significantly reduce production costs and also increase the quality of the final product. A precondition for increasing the quality of production is to achieve high accuracy of specialized machines and industrial robots, resp. the accuracy of positioning of individual parts. Due to the drive system and the achieved speed, the gear unit includes a gearbox. Reducers used in robotic joints are the most complex subsystems of robots. For very precise applications, the designers will reach for the so-called backlash-free reducers for their characteristic properties (minimum values of backlash in teeth, angular transmission errors, hysteresis and others). Despite many positive properties, high-precision reducers also show their characteristic nonlinearities, which influence the behavior of the whole system and it is so important to know their behavior. Given these facts, this article deals with the design and implementation of mechatronic diagnostic equipment for the identification of nonlinearities, static and dynamic parameters, vibrodiagnostic measurements and measurements of the efficiency of bearing reducers.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhen Ying ◽  
Iftikhar Ahmad ◽  
Saima Mateen ◽  
Asad Zia ◽  
Ambreen ◽  
...  

In the last decade, the Internet of Things (IoT) has grown to connect a large number of smart entities, devices, and components. These connected entities provide a wide range of services to improve the current society of end customers. The Industrial Internet of Things (IIoTs) are revolutionary systems that have linked manufacturing processes with Internet access in order to preciously increase quality of services. These systems have minimized the costs of production through collaboration with electronic objects, accumulating computing, advanced analytics, and smart perception techniques. A demanding analysis of the strengths and limitations of computational models of IIoT is an essential part of the industry and before deciding which approach to use and implement for enhancing usability. Therefore, the goal of this study is to provide feedback and information to the research community and identify patterns in recommendations for future research in the context of process, development, and monitoring of additional technologies of computational models for IIoT. This paper has presented a comprehensive summary of the existing literature on IIoT for providing details about modern industrial revolutions in the context of IIoT. Associated materials were searched and filtered for identification of relevant materials to the proposed study. These materials have been collectively studied with in-depth analysis and then summarized to condense the information of computation models for the readers as well as entrepreneurs. The study will facilitate research community and practitioners to develop novel techniques, algorithms, and tools to automate and facilitate IIoT. This will develop the field of IIoT and will enhance its usability.


2011 ◽  
Vol 216 ◽  
pp. 360-363 ◽  
Author(s):  
Jun Wang ◽  
Zhan Mei ◽  
Li Feng Wei

For further development and building a solid foundation of industrial Internet of things, a wireless communication card (WCC) based on UWB used in industrial Internet of Things (IoT) is designed in the paper. The implementations of WCC are proposed and critical problem on software design is solved. It successfully solves the problem of communication with IO card. At the same time, it provides upgrade program form industrial control systems to industrial Internet of Things.


Sign in / Sign up

Export Citation Format

Share Document