scholarly journals On A New Two Parameter Fréchet Distribution with Applications

Author(s):  
Rania Hassan Abd El Khaleq

A new ‡exible extension of the Fréchet model is proposed and studied. Some of itsfundamental statistical properties are derived. The importance of the new model is shown via two applications to real data sets. A simple type Copula based construction are also presented.We assess the performance of the maximum likelihood estimations of the new distribution with respect to sample size n. The assessment was based on a simulation study.The new model is much better than other important competitive models.

2018 ◽  
Vol 7 (4) ◽  
pp. 57 ◽  
Author(s):  
Jehhan. A. Almamy ◽  
Mohamed Ibrahim ◽  
M. S. Eliwa ◽  
Saeed Al-mualim ◽  
Haitham M. Yousof

In this work, we study the two-parameter Odd Lindley Weibull lifetime model. This distribution is motivated by the wide use of the Weibull model in many applied areas and also for the fact that this new generalization provides more flexibility to analyze real data. The Odd Lindley Weibull density function can be written as a linear combination of the exponentiated Weibull densities. We derive explicit expressions for the ordinary and incomplete moments, moments of the (reversed) residual life, generating functions and order statistics. We discuss the maximum likelihood estimation of the model parameters. We assess the performance of the maximum likelihood estimators in terms of biases, variances, mean squared of errors by means of a simulation study. The usefulness of the new model is illustrated by means of two real data sets. The new model provides consistently better fits than other competitive models for these data sets. The Odd Lindley Weibull lifetime model is much better than \ Weibull, exponential Weibull, Kumaraswamy Weibull, beta Weibull, and the three parameters odd lindly Weibull with three parameters models so the Odd Lindley Weibull model is a good alternative to these models in modeling glass fibres data as well as the Odd Lindley Weibull model is much better than the Weibull, Lindley Weibull transmuted complementary Weibull geometric and beta Weibull models so it is a good alternative to these models in modeling time-to-failure data.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


Author(s):  
Hisham Abdel Hamid Elsayed ◽  
Haitham M. Yousof

A new univariate extension of the Fréchet distribution is proposed and studied. Some of its fundamental statistical properties such as stochastic properties, ordinary and incomplete moments, moments generating functions, residual life and reversed residual life functions, order statistics, quantile spread ordering, Rényi, Shannon and q-entropies are derived. A simple type Copula based construction using Morgenstern family and via Clayton Copula is employed to derive many bivariate and multivariate extensions of the new model. We assessed the performance of the maximum likelihood estimators using a simulation study. The importance of the new model is shown by means of two applications to real data sets.


Author(s):  
Hoda Ragab Rezk

Abstract: A new extension of the reciprocal Rayleigh distribution is introduced. Simple type copula-based construction is presented for deriving and many bivariate and multivariate type distributions of the reciprocal Rayleigh model. The new reciprocal Rayleigh model generalizes another three reciprocal Rayleigh distributions. The performance of the estimation method is assessed using a graphical simulation study. The new model is better than some other important competitive models in modeling different real data sets.


2018 ◽  
Vol 7 (5) ◽  
pp. 120
Author(s):  
T. H. M. Abouelmagd

A new version of the Lomax model is introduced andstudied. The major justification for the practicality of the new model isbased on the wider use of the Lomax model. We are also motivated tointroduce the new model since the density of the new distribution exhibitsvarious important shapes such as the unimodal, the right skewed and the leftskewed. The new model can be viewed as a mixture of the exponentiated Lomaxdistribution. It can also be considered as a suitable model for fitting thesymmetric, left skewed, right skewed, and unimodal data sets. The maximumlikelihood estimation method is used to estimate the model parameters. Weprove empirically the importance and flexibility of the new model inmodeling two types of aircraft windshield lifetime data sets. The proposedlifetime model is much better than gamma Lomax, exponentiated Lomax, Lomaxand beta Lomax models so the new distribution is a good alternative to thesemodels in modeling aircraft windshield data.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1361
Author(s):  
Héctor J. Gómez ◽  
Diego I. Gallardo ◽  
Osvaldo Venegas

In this article we study the properties, inference, and statistical applications to a parametric generalization of the truncation positive normal distribution, introducing a new parameter so as to increase the flexibility of the new model. For certain combinations of parameters, the model includes both symmetric and asymmetric shapes. We study the model’s basic properties, maximum likelihood estimators and Fisher information matrix. Finally, we apply it to two real data sets to show the model’s good performance compared to other models with positive support: the first, related to the height of the drum of the roller and the second, related to daily cholesterol consumption.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 32-47
Author(s):  
Gauss Cordeiro ◽  
Maria de Lima ◽  
Edwin Ortega ◽  
Adriano Suzuki

We propose an extended fatigue lifetime model called the odd log-logistic Birnbaum–Saunders–Poisson distribution, which includes as special cases the Birnbaum–Saunders and odd log-logistic Birnbaum–Saunders distributions. We obtain some structural properties of the new distribution. We define a new extended regression model based on the logarithm of the odd log-logistic Birnbaum–Saunders–Poisson random variable. For censored data, we estimate the parameters of the regression model using maximum likelihood. We investigate the accuracy of the maximum likelihood estimates using Monte Carlo simulations. The importance of the proposed models, when compared to existing models, is illustrated by means of two real data sets.


2017 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Mohieddine Rahmouni ◽  
Ayman Orabi

This paper introduces a new two-parameter lifetime distribution, called the exponential-generalized truncated geometric (EGTG) distribution, by compounding the exponential with the generalized truncated geometric distributions. The new distribution involves two important known distributions, i.e., the exponential-geometric (Adamidis and Loukas, 1998) and the extended (complementary) exponential-geometric distributions (Adamidis et al., 2005; Louzada et al., 2011) in the minimum and maximum lifetime cases, respectively. General forms of the probability distribution, the survival and the failure rate functions as well as their properties are presented for some special cases. The application study is illustrated based on two real data sets.


Author(s):  
Mohamed G. Khalil ◽  
Wagdy M. Kamel

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. Relevant properties are mathematically derived and analyzed. The new density exhibits various important symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types of data.


Sign in / Sign up

Export Citation Format

Share Document